初等数论:威尔逊定理的高斯推广之我的证明

题:威尔逊定理的高斯推广:除了 m = 4 , p t , 或 2 p t m=4,p^t,或2p^t m=4pt2pt之外,其中 p p p是奇素数, t t t是正整数,所有小于m而且和m互素的正整数的乘积同余于 1 ( m o d m ) 1 \pmod m 1(modm),而前一种情况同余于 − 1 ( m o d m ) -1 \pmod m 1(modm)(摘自《初等数论及其应用第六版》6.2节习题44,偶数答案需要联系出版社才有)

前言:书上的提示是利用同余方程覆盖集证明,表示没想明白。

设: ∏ = \prod= =所有小于m而且和m互素的正整数的乘积

证:
共同点证明:
对于任一与m互素的正整数 a a a,则对于同余方程必有解
a x ≡ 1 ( m o d m ) ⇒ ( x , m ) = 1 ax \equiv 1 \pmod m \Rightarrow (x, m) = 1 ax1(modm)(x,m)=1,不然 a a a不存在

1. m = 4 , p t , 或 2 p t 1.m=4,p^t,或2p^t 1.m=4pt2pt证明:
m = 4 ⇒ 3 ≡ − 1 ( m o d 4 ) m=4 \Rightarrow 3 \equiv -1 \pmod 4 m=431(mod4),显然成立
m = p t m = p^t m=pt
∵ \because 对于任一正整数 a a a,有 a ∈ [ 2 , m − 2 ] ⋀ ( m , a ) = 1 a \in [2, m-2] \bigwedge (m, a) = 1 a[2,m2](m,a)=1
∴ a 2 ≡ 1 ( m o d m ) ⇒ m ∣ ( a − 1 ) ( a + 1 ) \therefore a^2 \equiv 1 \pmod m \Rightarrow m \mid (a-1)(a+1) a21(modm)m(a1)(a+1)
∵ ( a + 1 , a − 1 ) = ( a + 1 , 2 ) ∈ { 1 , 2 } \because (a+1, a- 1) = (a+1, 2) \in \{1, 2\} (a+1,a1)=(a+

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值