机器学习-特征选择-随机森林

本文通过随机森林算法展示了特征的重要性排序,并介绍了如何使用SelectFromModel进行特征选择。提供了相应的代码实现及运行结果。
摘要由CSDN通过智能技术生成
Section I: Code Bundle
  • 第一部分:Feature Importance Sorted via Random Forest

代码

import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.ensemble import RandomForestClassifier

#Section 1: Prepare data
plt.rcParams['figure.dpi']=200
plt.rcParams['savefig.dpi']=200
font = {
   'family': 'Times New Roman',
        'weight': 'light'}
plt.rc("font", **font)

#Section 2: Load data and split it into train/test dataset
wine=datasets.load_wine()
X,y=wine.data,wine.target
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=1,stratify=y)

#Section 3: Select features via Random Forest
feat_labels=wine.feature_names
forest=RandomForestClassifier
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值