哈夫曼树 | 最小堆实现 |C语言

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

typedef struct TreeNode *HuffmanTree;
struct TreeNode {
    int Weight;
    HuffmanTree Left, Right;
};

void Insert(int X)
{   // 将X插入最小堆H中
    int i;
    
    // 检查堆是否已满
    if (IsFull(H))
        printf("已满");
    
    for (i = ++size; H[i/2] > X; i/=2)
        H[i] = H[i/2];   // 向上调整结点,保证最小堆的有序性
    H[i] = X;
}

HuffmanTree Huffman(MinHeap H)
{
    // 假设H->Size个权值已经存在H->Elements[]->Weight里
    int i; HuffmanTree T;
    BuildMinHeap(H);    // 将H->Elements按权值调整为最小堆
    for (i = 1; i < H->Size; i++) {
        // 做H->Size-1次合并
        T = malloc(sizeof(struct TreeNode)); // 建立新结点
        T->Left = DeleteMin(H); // 从最小堆中删除一个结点,作为新T的左子结点
        T->Right = DeleteMin(H); // 从最小堆中删除一个结点,作为新T的右子结点
        T->Weight = T->Left->Weight + T->Right->Weight; // 计算新权值
        Insert(H, T); // 将新T插入最小堆
    }
    T = DeleteMin(H);
}

int WPL(HuffmanTree T, int Depth)
{   // 计算最优编码长度
    if (!T->Left && !T->Right)
        return (Depth * T->Weight);
    else // 否则T一定有2个孩子
        return (WPL(T->Left, Depth+1)
                + WPL(T->Right, Depth+1));
}

int main()
{
    MinHeap H = CreateHeap(N);   // 创建一个空的、容量为N的最小堆
    H = ReadData(N);   // 将f[]读入H->Data[]中
    HuffmanTree T = Huffman(H);   // 建立Huffman树
    int CodeLen = WPL(T, 0);   // 计算最优编码长度
}

【例】
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值