扩散方程——热传导问题(能量定律+傅里叶热传导定律)+ 拉普拉斯方程 | 偏微分方程(三)

热传导问题

物理问题:空间某个物体或静止流体内温度分布不均匀,引起热量流动及温度的变化。

理想化假设

  1. 物体由同一介质构成,且介质均匀分布、各向同性
  2. 介质的密度、比热和热传导系数均为常数。

物理定律:

  1. 能量守恒定律
  2. 傅里叶热传导定律

数学建模(1):

  1. 在空间取定直角坐标系

  2. 取各点在t时刻的温度 u = u ( t , x , y , z ) u=u(t,x,y,z) u=u(t,x,y,z)为热运动的表征量

  3. **微元分析:**在介质内任取微元 d V = [ ( x , y , z ) , ( x + d x , y + d y , z + d z ) ] dV=[(x,y,z),(x+dx,y+dy,z+dz)] dV=[(x,y,z)(x+dx,y+dy,z+dz)],考察微元 d V dV dV在时间间隔 [ t , t + d t ] [t,t+dt] [t,t+dt]内的温度变化

  4. 微元满足能量守恒定律, [ t , t + d t ] [t, t+dt] [t,t+dt]

    外界流入热量 + 内部热源产热 = 温度升高所需热量
    Q 流 入 + Q 热 源 = Q 温 度 升 高 Q_{流入}+Q_{热源}=Q_{温度升高} Q+Q=Q
    傅里叶热传导定律:热量从高温处向低温处流动,沿某方向流动热量的多少与温度在该方向的减少率成比例。
    q → = − k ∇ u = { q x = − k ∂ u ∂ x q y = − k ∂ u ∂ y q z = − k ∂ u ∂ z \overrightarrow q=-k\nabla u = \begin{cases} q_x = -k\frac{\partial u}{\partial x} \\ q_y = -k\frac{\partial u}{\partial y} \\ q_z = -k\frac{\partial u}{\partial z} \end{cases} q =ku=qx=kxuqy=kyuqz=kzu
    其中 q → \overrightarrow q q 是热流密度矢量,表示单位时间沿单位面积的法向流出的热量。

    ∴ \therefore
    Q 左 右 = q ∣ x ⋅ d t ⋅ d y d z − q ∣ x + d x ⋅ d t ⋅ d y d z = ( q ∣ x − q ∣ x + d x ) ⋅ d t d y d z = − ∂ q ∂ x d x ⋅ d t d y d z = − ∂ ∂ x ( − k ∂ u ∂ x ) ⋅ d t d V = k ∂ 2 u ∂ x 2 d t d V Q_{左右}=q|_x·dt·dydz-q|_{x+dx}·dt·dydz \\ =(q|_x-q|_{x+dx})·dtdydz \\ =-\frac{\partial q}{\partial x}dx·dtdydz =-\frac{\partial}{\partial x}(-k\frac{\partial u}{\partial x})·dtdV \\ =k\frac{\partial^2u}{\partial x^2}dtdV Q=qxdtdydzqx+dxdtdydz=(qxqx+dx)dtdydz=xqdxdtdydz=x(kxu)dtdV=kx22udtdV

    Q 前 后 = q ∣ y ⋅ d t ⋅ d x d z − q ∣ y + d y ⋅ d t ⋅ d x d z = ( q ∣ y − q ∣ y + d y ) ⋅ d t d x d z = − ∂ q ∂ y d y ⋅ d t d x d z = − ∂ ∂ y ( − k ∂ u ∂ y ) ⋅ d t d V = k ∂ 2 u ∂ y 2 ⋅ d t d V Q_{前后}=q|_y·dt·dxdz-q|_{y+dy}·dt·dxdz \\ =(q|_y-q|_{y+dy})·dtdxdz \\ =-\frac{\partial q}{\partial y}dy·dtdxdz = -\frac{\partial}{\partial y}(-k\frac{\partial u}{\partial y})·dtdV \\ =k\frac{\partial^2 u}{\partial y^2}·dtdV Q=qydtdxdzqy+dydtdxdz=(qyqy+dy)dtdxdz=yqdydtdxdz=y(kyu)dtdV=ky22udtdV

    Q 上 下 = k ∂ 2 u ∂ z 2 ⋅ d t d V Q_{上下}=k\frac{\partial^2 u }{\partial z^2}·dtdV Q=kz22udtdV

    Q 流 入 = k ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 ) ⋅ d t d V = k Δ u ⋅ d t d V Q_{流入}=k(\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}+\frac{\partial^2u}{\partial z^2})·dtdV=k\Delta u·dtdV Q=k(x22u+y22u+z22u)dtdV=kΔudtdV

    ∵ \because
    Q 热 源 = g ( x , y , z , t ) d t d V Q_{热源}=g(x,y,z,t)dtdV Q=g(x,y,z,t)dtdV
    g ( x , y , z , t ) g(x,y,z,t) g(x,y,z,t)表示单位体积内部热源的产热率(单位时间单位面积产热量)
    Q 升 温 = c ⋅ ρ d V ⋅ [ u ( t + d t , x , y , z ) − u ( t , x , y , z ) ] = c ⋅ ρ d V ⋅ ∂ u ∂ t d t = c ρ ∂ u ∂ t d t d V Q_{升温}=c·\rho dV·[u(t+dt,x,y,z)-u(t,x,y,z)] \\=c·\rho dV·\frac{\partial u}{\partial t}dt \\=c\rho \frac{\partial u}{\partial t}dtdV Q=cρdV[u(t+dt,x,y,z)u(t,x,y,z)]=cρdVtudt=cρtudtdV
    由能量守恒定律得
    k Δ u ⋅ d t d V + g ( x , y , z , t ) d t d V = c ρ ∂ u ∂ t d t d V k c ρ Δ u + g ( x , y , z , t ) c ρ = ∂ u ∂ t k\Delta u·dtdV + g(x,y,z,t)dtdV = c\rho \frac{\partial u}{\partial t}dtdV \\\frac{k}{c\rho}\Delta u+\frac{g(x,y,z,t)}{c\rho}=\frac{\partial u}{\partial t} kΔudtdV+g(x,y,z,t)dtdV=cρtudtdVcρkΔu+cρg(x,y,z,t)=tu

    热传导方程(扩散方程):
    ∂ u ∂ t = a 2 Δ u + f ( t , x → ) ,   a = κ c ρ , f ( t , x → ) = g ( t , x → ) c ρ \frac{\partial u}{\partial t}=a^2\Delta u+f(t,\overrightarrow x),\space a=\sqrt{\frac{\kappa}{c\rho}},f(t,\overrightarrow x)=\frac{g(t,\overrightarrow x)}{c\rho} tu=a2Δu+f(t,x ), a=cρκ ,f(t,x )=cρg(t,x )
    其中, κ \kappa κ为热扩散系数。

    量纲分析:
    [ k ] [ c ] ⋅ [ ρ ] = J / ( s ⋅ m ⋅ K ) J / ( k g ⋅ K ) ⋅ k g / m 3 = m / s [ u ] [ t ] = [ a 2 ] ⋅ [ u ] [ x 2 ]    ⟹    [ a 2 ] = m 2 / s \sqrt{\frac{[k]}{[c]·[\rho]}} = \sqrt{\frac{J/(s·m·K)}{J/(kg·K)·kg/m^3}}=m/\sqrt{s} \\ \frac{[u]}{[t]}=[a^2]·\frac{[u]}{[x^2]} \implies [a^2]=m^2/s [c][ρ][k] =J/(kgK)kg/m3J/(smK) =m/s [t][u]=[a2][x2][u][a2]=m2/s
    根据量纲可知,扩散传播距离与时间之间的关系:
    x 2 ∝ a 2 t x^2 \propto a^2t x2a2t

数学建模(2):

  1. 在空间取定直角坐标系

  2. 取各点在t时刻的温度 u = u ( t , x , y , z ) u=u(t,x,y,z) u=u(t,x,y,z)为热运动的表征量。

  3. 在介质内任取微元 d V = [ x , x + d x ] × [ y , y + d y ] × [ z , z + d z ] dV=[x,x+dx]\times [y,y+dy]\times [z,z+dz] dV=[x,x+dx]×[y,y+dy]×[z,z+dz],考察微元 d V dV dV在时间间隔 [ t , t + d t ] [t,t+dt] [t,t+dt]内的温度变化。

  4. 根据能量守恒定律,物体温度升高所需热量等于外部流入热量和内部热源产生热量之和。

    热量的流动遵循傅里叶热传导定律:热量从温度高处向低处,沿某方向流动热量的多少与温度在该方向的减少率成比例,其数学表示式为
    Q n = − k ( x , y , z ; n ) ∂ u ∂ n n \bold Q_n=-k(x,y,z;n)\frac{\partial u}{\partial n}\bold n Qn=k(x,y,z;n)nun
    其中, Q n \bold Q_n Qn n \bold n n方向的热流密度矢量,即单位时间沿 n \bold n n方向通过单位面积的热量; k ( x , y , z ; n ) k(x,y,z;n) k(x,y,z;n)为介质的热传导系数,在介质均匀,各项同性假设下是常数,记为k。

    [ t , t + d t ] [t,t+dt] [t,t+dt]时间间隔内通过微元的左右面传入的热量为
    − k ∂ u ∂ x ∣ ( t , x , y , z ) d t d y d z + k ∂ u ∂ x ∣ ( t , x + d x , y , z ) ≈ k ∂ 2 u ∂ x 2 ∣ ( t , x , y , z ) d t d x d y d z -k\frac{\partial u}{\partial x}|_{(t,x,y,z)}dtdydz+k\frac{\partial u}{\partial x}|_{(t,x+dx,y,z)} \approx k\frac{\partial^2 u}{\partial x^2}|_{(t,x,y,z)}dtdxdydz kxu(t,x,y,z)dtdydz+kxu(t,x+dx,y,z)kx22u(t,x,y,z)dtdxdydz
    同样可以求出通过前后和上下面流入的热量分别为
    k ∂ 2 u ∂ y 2 d t d x d y d z 和 k ∂ 2 u ∂ z 2 d t d x d y d z k\frac{\partial^2u}{\partial y^2}dtdxdydz \quad 和 \quad k\frac{\partial^2u}{\partial z^2}dtdxdydz ky22udtdxdydzkz22udtdxdydz
    如果介质内部有热源,其热源密度,即单位时间单位体积热源流出的热量为 g ( t , x , y , z ) g(t,x,y,z) g(t,x,y,z),则在 [ t , t + d t ] [t,t+dt] [t,t+dt]时间间隔内,微元内部热源流出热量为
    g ( t , x , y , z ) d t d x d y d z g(t,x,y,z)dtdxdydz g(t,x,y,z)dtdxdydz
    而微元温度升高所需的热量为
    c ρ [ u ( t + d t , x , y , z ) − u ( t , x , y , z ) ] d x d y d z ≈ c ρ ∂ u ∂ t d t d x d y d z c\rho[u(t+dt,x,y,z)-u(t,x,y,z)]dxdydz \approx c\rho \frac{\partial u}{\partial t}dtdxdydz cρ[u(t+dt,x,y,z)u(t,x,y,z)]dxdydzcρtudtdxdydz
    这些等式中都忽略了高阶无穷小量

    讲这些量代入能量守恒定律,便得方程
    c ρ ∂ u ∂ t = k ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 ) + g ( t , x , y , z ) c\rho \frac{\partial u}{\partial t}=k(\frac{\partial^2u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2})+g(t,x,y,z) cρtu=k(x22u+y22u+z22u)+g(t,x,y,z)
    即热传导方程
    ∂ u ∂ t = a 2 Δ u + f ( t , x , y , z ) \frac{\partial u}{\partial t}=a^2\Delta u +f(t,x,y,z) tu=a2Δu+f(t,x,y,z)
    其中, Δ = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 \Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2} Δ=x22+y22+z22为三维拉普拉斯算子, a = k c ρ , f ( t , x , y , z ) = g ( t , x , y , z ) c ρ a=\sqrt{\frac{k}{c\rho}}, f(t,x,y,z)=\frac{g(t,x,y,z)}{c\rho} a=cρk ,f(t,x,y,z)=cρg(t,x,y,z)

    如果考虑侧面绝热杆的温度,或柱上与高度无关的温度变化,同样可导出热传导方程,只是拉普拉斯算子相应地取为一维或二维。

总结:热传导方程的建立基于能量守恒和热传导两条基本物理定律。像气体扩散、杂志在固体或液体中扩散这些物理过程,其机理与热传导相似,都是由浓度的不均匀引起不同物质分子的位置变换,变换过程中每种物质的总量保持不变。选取适当的未知函数,导出的方程与热传导方程有相同形式,因此也称热传导方程为扩散方程。

波动方程和热传导方程分别描述了双向传播和单向传播两种完全不同的物理过程。它们都与时间t有关,称为发展方程。如果考虑热传导方程的稳恒状态,即 ∂ u ∂ t ≡ 0 \frac{\partial u}{\partial t}\equiv 0 tu0,它就成为泊松(Poisson)方程
Δ u = − 1 a 2 f ( x , y , z ) \Delta u=-\frac{1}{a^2}f(x,y,z) Δu=a21f(x,y,z)
f ( x , y , z ) ≡ 0 f(x,y,z)\equiv 0 f(x,y,z)0时,就是Laplace方程(也称调和方程
Δ u = 0 \Delta u=0 Δu=0

  • 54
    点赞
  • 258
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 嗨!首先感谢你的问题。Matlab可以使用内置函数fft进行傅里叶变换的计算。下面是一个简单的示例代码: ``` % 定义时间序列 t = linspace(0,2*pi,1000); % 定义信号 y = sin(2*pi*5*t) + cos(2*pi*10*t); % 计算傅里叶变换 Y = fft(y); % 计算频率序列 f = linspace(0,1,1000); % 绘制频谱图 plot(f,abs(Y)); ``` 关于傅里叶变换求解偏微分方程和积分方程,这是一个非常广泛的领域,Matlab在这个领域也有很多的工具箱和函数。具体的实现方法可以根据不同的方程问题进行选择和调整。如果你有具体的问题需要求解,可以提供更多的信息,我可以为你提供更具体的帮助。 ### 回答2: Matlab是一种功能强大的科学计算软件,可以方便地实现傅里叶变换(Fourier Transform)和傅立叶级数展开(Fourier Series Expansion)。 傅里叶变换是一种将一个信号从时域(时间域)转换到频域(频率域)的数学工具,通过分析信号的频谱特征,可以对信号进行频谱分析、滤波、降噪等操作。在Matlab中,可以使用fft()函数来实现离散傅里叶变换(DFT),ifft()函数来实现离散傅里叶逆变换(IDFT),fftshift()函数用于对频谱进行中心化处理。 傅立叶级数展开可以将一个周期信号表示为一系列正弦和余弦函数的线性组合,它在信号分析的应用中被广泛使用。在Matlab中,可以使用FourierSeries()函数来实现傅立叶级数展开,可以指定展开的周期、频率分量的数量和振幅等参数。 傅立叶变换在偏微分方程和积分方程的求解中也有重要应用。通过将偏微分方程或积分方程转化到频率域,可以简化求解过程。在Matlab中,可以通过傅里叶变换来求解时谐偏微分方程(Time-Harmonic PD Es),即偏微分方程的解具有频率依赖性质。通过将时谐偏微分方程转化为代数方程,可以使用Matlab的求解器(如solve()函数)得到解析解。 对于积分方程,傅立叶变换同样可以发挥作用。可以通过将积分方程转化为代数方程,然后使用Matlab的求解器进行求解。在这个过程中,使用傅里叶变换的目的是对局部波的响应进行频谱分析,并将问题转化为频域下的代数方程求解。 综上所述,Matlab提供了丰富的函数和工具,可以方便地实现傅里叶变换和傅立叶级数展开,并应用于偏微分方程和积分方程的求解。这些功能使得Matlab成为工程学、物理学以及其他科学领域中重要的数值计算和信号处理工具。 ### 回答3: Matlab可以用来实现傅立叶变换,从而求解偏微分方程和积分方程。 傅立叶变换是一种重要的数学工具,可以将一个函数表示为一系列正弦和余弦函数的组合。Matlab中有现成的函数fft可以实现离散傅立叶变换(DFT),而ifft函数可以进行逆傅立叶变换。 对于偏微分方程,我们可以通过傅立叶变换将微分方程转化为代数方程。首先,我们将待求函数进行傅立叶变换,得到其频率域表示。然后,我们可以将微分方程中的导数操作转化为乘法操作,从而得到一个代数方程。通过求解这个代数方程,我们可以得到频率域中的解。最后,使用ifft函数将频率域中的解进行逆傅立叶变换,得到时域中的解。 对于积分方程,我们也可以利用傅立叶变换来求解。通过将积分方程进行傅立叶变换,可以将其转化为代数方程。然后,我们可以通过求解这个代数方程来得到频率域中的解。最后,再将频率域中的解进行逆傅立叶变换,得到时域中的解。 总之,利用Matlab中的fft和ifft函数,我们可以利用傅立叶变换来求解偏微分方程和积分方程。这为我们研究和解决各种数学问题提供了一种有效的方法。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值