ADNI数据库的使用与脑影像数据下载

本文详细指导如何从ADNI官网获取影像数据,包括注册账号、选择数据类型、高级搜索参数设置、筛选数据并下载至指定文件夹,以高效获取所需AD和CN群体的T1MRI数据,避免无用数据下载。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先找到ADNI的官网,在官网上也有一些关于数据的简介可以帮助你对ADNI数据库多一些了解,以及更加方便地找到你所需要的数据。

点击官网连接进入网站,先点击数据与样本,然后在下方找到登陆注册,进入黑色界面之后找到右上角账号登陆即可,注意若是此步骤无法点击登录是因为没有接受cookie。

若没有账号则需要申请,大概申请需要一周以内的时间,快则两三天。

按照红框标注的步骤依次选择ADNI数据库以及选择下载的数据类型——影像数据,在此界面中间的一个统计图中我们可以观察到一些关于ADNI数据库被试样本的一些信息,包括不同发病阶段、不同年龄段的人数以及对应的男女比例等等。

在选择号下载的数据库以及需要下载的数据类型之后,登录可以看到自己专属的一个数据收集库,你想要下载的数据都会被归纳到这里然后进行统一下载。看以看到搜索你想要的数据是在高级搜索的位置,而下方便是你之间整理的不同类型、不同成像参数的数据,我们需要先点击高级搜索。对了,最前方那个搜索的按钮也可以使用,但为了更加方便快捷,我们一般使用高级搜索。

在点击高级搜索之后,看以看到以下界面,以需要下载AD的患病人群和正常人群的T1MRI数据为例,我们需要注意控制几个参数,已经在下方用红框顺序标出:首先是选择ADNI的不同阶段,我们这里选择·ADNIGO/2,因为我们发现这个阶段我们需要的的类型的数据比1阶段数据稍微好些、多些,然后就是选择研究组AD\CN,对应AD患者和正常人,选择图像类型MRI,控制选择切片厚度,注意切片类型是一定要进行控制的,但是如果后续要进行配准则不需要太过重视,三个扫面方向也各有千秋,需要根据自己的用途进行限制,最后则是选择T1类型。

在最右侧用黄框标注的部分如果你在相应的位置打勾,则这项结果会在最终的搜索界面中表示出来。

在最终的搜索界面中,我们可以看到部分的信息包括切片厚度以及对应厚度的人群数量,不同年龄段的人数以及成像参数,图像描述也就是成像参数部分差距较大,部分几乎没有什么差别,要注意区分选择。在选择数据步骤建议在黄色框位置进行筛选,避免下载过多无用数据。

图中显示的两种图像描述几乎没有区别。

在选择好数据之后,可以选择将其保存在已有文件夹或者是新建一个文件夹,文件夹的所处位置就是刚刚登录就看到的那个界面,也就是数据收集板块。

在数据下载步骤,我们首先要找到需要下载数据的文件夹,在文件夹中勾选出想要下载的数据,然后现在对应的CSV文件,最后点击下载或者分段下载,两个下载按钮的区别就是一个是把所有的数据打包下载,一个是把很多数据分成很多部分同时下载没建议选择分段下载速度更快。

### 如何从ADNI数据库下载临床数据 为了获取来自阿尔茨海默病神经影像学计划 (ADNI) 数据库中的临床数据,需遵循一系列特定的操作流程。访问IDA官方网站并登录账户是第一步操作[^2]。 #### 登录导航至目标页面 成功登录后,用户应前往ADNI项目专属页面,在此可以找到多种类型的可用资源链接。对于希望获得具体临床指标(如MMSE评分)的研究人员来说,应当特别关注那些标注有“Clinical Data”的选项。 #### 浏览及选择所需资料包 在Data Collections页面左侧菜单栏内提供了多个预整理完成的数据集合供研究者挑选;这些集合可能已经包含了部分经过初步处理后的临床测量结果和其他相关信息[^3]。如果想要更精确地定位到某类特殊疾病阶段或是治疗反应模式下的患者群体,则建议利用高级搜索工具进一步缩小范围直至锁定最合适的那一批次记录文件夹位置。 #### 下载过程注意事项 当确定好感兴趣的子集之后,点击对应的名称即可查看其详情描述以及可选版本列表。值得注意的是,并不是所有的公开版都能满足个人科研需求——某些敏感度较高的变量或许仅限于通过申请审核机制才能取得访问权限[^4]。因此,在提交请求前务必仔细阅读相关条款说明文档以确保所获授权级别能够覆盖预期用途范围内的一切必要字段内容。 ```python import requests from bs4 import BeautifulSoup def fetch_adni_clinical_data(url, username, password): session = requests.Session() login_payload = { 'username': username, 'password': password } response = session.post('https://ida.loni.usc.edu/login', data=login_payload) if "Logout" not in response.text: raise Exception("Login failed") soup = BeautifulSoup(session.get(url).content, 'html.parser') download_links = [] for link in soup.find_all('a'): href = link.get('href') if '/download' in str(href): download_links.append(f"https://ida.loni.usc.edu{href}") return download_links ``` 上述Python脚本展示了如何自动化这一过程中的一部分工作流:模拟浏览器行为自动填写表单实现无人值守登陆认证,并抓取指定URL页面内的所有下载链接地址以便后续批量处理任务调用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Saslil

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值