卷积神经网络实现图像识别

项目简介

目的: 实现昆虫的图像分类,同时该模型也可以用于其他图像的分类识别,只需传入相应的训练集进行训练,保存为另一个模型即可,进行调用使用。
配置环境: pycharm(python3.7),导入pytotch库
知识预备: 需要了解卷积神经网络的基本原理与结构,熟悉pytorch的使用,csdn有很多介绍卷积神经网络的文章,可查阅。
例如:

https://blog.csdn.net/yunpiao123456/article/details/52437794
https://blog.csdn.net/weipf8/article/details/103917202

算法设计思路:
(1) 收集数据集,利用 python 的 requests 库和 bs4 进行网络爬虫,下载数据集
(2) 搭建卷积神经网络
(3)对卷积神经网络进行训练
(4) 改进训练集与测试集,并扩大数据集
(5) 保存模型
(6) 调用模型进行测试

项目效果展示

在这里插入图片描述
在这里插入图片描述
注,模型我达到的最高正确率在85%,最后稳定在79%,中间出现了过拟合,可减少训练次数进行优化,数据集较少的情况下,建议训练10次就可。

程序运行流程图

在这里插入图片描述

代码使用说明

先训练模型,进行模型保存之后可对模型进行调用,不用每使用一次模型就要进行训练。文末有项目的完整代码:修改自己的数据集src位置,一般情况下能正常运行,如果不能,请检查自己的第三方库是否成功安装,以及是否成功导入。若有问题可以私信交流学习。

数据集准备

注:由于爬虫,会有一些干扰数据,所以我这里展示的是进行数据清洗之后的数据。
注:训练集:测试集=7:3(可自己修改)
注:若正确率不理想,可扩大数据集,数据清洗,图片处理等方面进行改进

训练集

在这里插入图片描述
部分数据展示
在这里插入图片描述
在这里插入图片描述

测试集

文件格式与训练集一样。

搭建神经网络

框架:
在这里插入图片描述
结构:
在这里插入图片描述
代码实现:


# 定义网络
class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3)
        self.max_pool1 = nn.MaxPool2d(2)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.max_pool2 = nn.MaxPool2d(2)
        self.conv3 = nn.Conv2d(64, 64, 3)
        self.conv4 = nn.Conv2d(64, 64, 3)
        self.max_pool3 = nn.MaxPool2d(2)
        self.conv5 = nn.Conv2d(64, 128, 3)
        self.conv6 = nn.Conv2d(128, 128, 3)
        self.max_pool4 = nn.MaxPool2d(2)
        self.fc1 = nn.Linear(4608, 512)
        self.fc2 = nn.Linear(512, 1)

    def forward(self, x):
        in_size = x.size(0)
        x = self.conv1(x)
        x = F.relu(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.max_pool2(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.conv4(x)
        x = F.relu(x)
        x = self.max_pool3(x)
        x = self.conv5(x)
        x = F.relu(x)
        x = self.conv6(x)
        x = F.relu(x)
        x = self.max_pool4(x)
        # 展开
        x = x.view(in_size, -1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = torch.sigmoid(x)
        return x

训练函数

def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):

        data, target = data.to(device), target.to(device).float().unsqueeze(1)

        optimizer.zero_grad()

        output = model(data)

        # print(output)

        loss = F.binary_cross_entropy(output, target)

        loss.backward()

        optimizer.step()

        if (batch_idx + 1) % 1 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(

                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),

                       100. * (batch_idx + 1) / len(train_loader), loss.item()))

测试函数

def test(model, device, test_loader):
    model.eval()

    test_loss = 0

    correct = 0

    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device).float().unsqueeze(1)
            # print(target)
            output = model(data)
            # print(output)
            test_loss += F.binary_cross_entropy(output, target, reduction='mean').item()
            pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in output]).to(device)
            correct += pred.eq(target.long()).sum().item()

        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))

模型-训练过程完整代码

模型保存使用的是torch.save(model,src),model即须保存的模型,src即模型保存的位置,后缀为pth

import torch.nn.functional as F
import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
from PIL import Image
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets


# 设置超参数
#每次的个数
BATCH_SIZE = 20
#迭代次数
EPOCHS = 10
#采用cpu还是gpu进行计算
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 数据预处理

transform = transforms.Compose([
    transforms.Resize(100),
    transforms.RandomVerticalFlip(),
    transforms.RandomCrop(50),
    transforms.RandomResizedCrop(150),
    transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
#导入训练数据
dataset_train = datasets.ImageFolder('D:\\cnn_net\\train\\insects', transform)

#导入测试数据
dataset_test = datasets.ImageFolder('D:\\cnn_net\\train\\test', transform)

test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=True)

# print(dataset_train.imgs)
# print(dataset_train[0])
# print(dataset_train.classes)
classess=dataset_train.classes #标签
class_to_idxes=dataset_train.class_to_idx #对应关系
print(class_to_idxes)
# print(dataset_train.class_to_idx)

train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
# for batch_idx, (data, target) in enumerate(train_loader):
#     # print(data)
#     print(target)
#     data, target = data.to(device), target.to(device).float().unsqueeze(1)
#     # print(data)
#     print(target)

# 定义网络
class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3)
        self.max_pool1 = nn.MaxPool2d(2)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.max_pool2 = nn.MaxPool2d(2)
        self.conv3 = nn.Conv2d(64, 64, 3)
        self.conv4 = nn.Conv2d(64, 64, 3)
        self.max_pool3 = nn.MaxPool2d(2)
        self.conv5 = nn.Conv2d(64, 128, 3)
        self.conv6 = nn.Conv2d(128, 128, 3)
        self.max_pool4 = nn.MaxPool2d(2)
        self.fc1 = nn.Linear(4608, 512)
        self.fc2 = nn.Linear(512, 1)

    def forward(self, x):
        in_size = x.size(0)
        x = self.conv1(x)
        x = F.relu(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.max_pool2(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.conv4(x)
        x = F.relu(x)
        x = self.max_pool3(x)
        x = self.conv5(x)
        x = F.relu(x)
        x = self.conv6(x)
        x = F.relu(x)
        x = self.max_pool4(x)
        # 展开
        x = x.view(in_size, -1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = torch.sigmoid(x)
        return x

modellr = 1e-4

# 实例化模型并且移动到GPU

model = ConvNet().to(device)
print(model)
# 选择简单暴力的Adam优化器,学习率调低

optimizer = optim.Adam(model.parameters(), lr=modellr)
#调整学习率
def adjust_learning_rate(optimizer, epoch):
    """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
    modellrnew = modellr * (0.1 ** (epoch // 5))
    print("lr:", modellrnew)
    for param_group in optimizer.param_groups:
        param_group['lr'] = modellrnew

# 定义训练过程
def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):

        data, target = data.to(device), target.to(device).float().unsqueeze(1)

        optimizer.zero_grad()

        output = model(data)

        # print(output)

        loss = F.binary_cross_entropy(output, target)

        loss.backward()

        optimizer.step()

        if (batch_idx + 1) % 1 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(

                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),

                       100. * (batch_idx + 1) / len(train_loader), loss.item()))

def test(model, device, test_loader):
    model.eval()

    test_loss = 0

    correct = 0

    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device).float().unsqueeze(1)
            # print(target)
            output = model(data)
            # print(output)
            test_loss += F.binary_cross_entropy(output, target, reduction='mean').item()
            pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in output]).to(device)
            correct += pred.eq(target.long()).sum().item()

        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))




# 训练
for epoch in range(1, EPOCHS + 1):
    adjust_learning_rate(optimizer, epoch)
    train(model, device, train_loader, optimizer, epoch)
    test(model, device, test_loader)

torch.save(model, 'D:\\cnn_net\\datas\\model_insects.pth')

模型-调用完整代码

模型调用使用,torch.load(src)


from PIL import Image

from torchvision import transforms
import torch.nn.functional as F

import torch
import torch.nn as nn
import torch.nn.parallel


# 定义网络
class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3)
        self.max_pool1 = nn.MaxPool2d(2)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.max_pool2 = nn.MaxPool2d(2)
        self.conv3 = nn.Conv2d(64, 64, 3)
        self.conv4 = nn.Conv2d(64, 64, 3)
        self.max_pool3 = nn.MaxPool2d(2)
        self.conv5 = nn.Conv2d(64, 128, 3)
        self.conv6 = nn.Conv2d(128, 128, 3)
        self.max_pool4 = nn.MaxPool2d(2)
        self.fc1 = nn.Linear(4608, 512)
        self.fc2 = nn.Linear(512, 1)

    def forward(self, x):
        in_size = x.size(0)
        x = self.conv1(x)
        x = F.relu(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.max_pool2(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.conv4(x)
        x = F.relu(x)
        x = self.max_pool3(x)
        x = self.conv5(x)
        x = F.relu(x)
        x = self.conv6(x)
        x = F.relu(x)
        x = self.max_pool4(x)
        # 展开
        x = x.view(in_size, -1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = torch.sigmoid(x)
        return x


# 模型存储路径
# model_save_path = 'E:\\Cat_And_Dog\\kaggle\\model_insects.pth'

# ------------------------ 加载数据 --------------------------- #
# Data augmentation and normalization for training
# Just normalization for validation
# 定义预训练变换
# 数据预处理


class_names = ['瓢虫','螳螂',]  # 这个顺序很重要,要和训练时候的类名顺序一致

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# ------------------------ 载入模型并且训练 --------------------------- #
model = torch.load('D:\\cnn_net\\datas\\model_insects.pth')
model.eval()
# print(model)38,49

# image_PIL = Image.open('D:\\cnn_net\\train\\insects\\螳螂\\t28.jpg')
image_PIL = Image.open('D:\\cnn_net\\train\\insects\\瓢虫\\p49.jpg')
# image_PIL = Image.open('D:\\cnn_net\\train\\test\\01.jpg')
transform_test = transforms.Compose([
    transforms.Resize(100),
    transforms.RandomVerticalFlip(),
    transforms.RandomCrop(50),
    transforms.RandomResizedCrop(150),
    transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
    ])

image_tensor = transform_test(image_PIL)
    # 以下语句等效于 image_tensor = torch.unsqueeze(image_tensor, 0)
image_tensor.unsqueeze_(0)
    # 没有这句话会报错
image_tensor = image_tensor.to(device)

out = model(image_tensor)
# print(out)
pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in out]).to(device)
print(class_names[pred])

有错误的地方欢迎大家交流学习,进行指正,一起学习进步。

  • 60
    点赞
  • 556
    收藏
    觉得还不错? 一键收藏
  • 60
    评论
卷积神经网络(Convolutional Neural Network,CNN)是一种专门用于图像识别的神经网络模。它采用了卷积层、池化层、全连接层等多种层次,通过这些层次的组合和计算,可以从输入的图像数据中提取出更高层次的特征表示。这些特征表示可以用于图像分类、物体检测、人脸识别、自动驾驶等领域。 卷积层是卷积神经网络的核心组成部分。它通过使用卷积操作来提取图像中的特征,并通过不同的卷积核对图像进行卷积计算,从而得到不同的特征图。在卷积层中,每个卷积核都与输入图像进行逐元素乘法运算,并对结果求和,得到卷积输出的一个像素值。通过对整个图像进行卷积操作,我们可以获得一组特征图,每个特征图都表示了不同的特征信息。 池化层也是卷积神经网络中常用的一种层次。它通过对特征图进行下采样来减少参数数量,并且可以保留图像的重要特征。常见的池化操作有最大池化和平均池化,它们分别通过取特征图中的最大值和平均值来生成下采样后的特征图。 除了卷积层和池化层,卷积神经网络还包括全连接层。全连接层将卷积层和池化层提取的特征进行展平,并通过全连接操作将特征映射到最终的分类结果上。 通过以上的层次组合和计算,卷积神经网络可以在图像识别任务中取得较好的效果。它能够自动提取图像中的特征,并在训练过程中通过反向传播算法调整网络参数,从而使得网络能够更好地适应不同的图像分类任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 60
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值