
2025年R语言深度学习实战项目
文章平均质量分 78
每篇文章都有对应R语言代码
优惠券已抵扣
余额抵扣
还需支付
¥99.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
人工智能_SYBH
专注于项目实战开发,讲解,高校老师/讲师/同行合作。以及产品测评宣传、工具推广等合作。全网粉丝10万+,掘金/知乎/华为云/阿里云/51CTO等平台优质创作者。
展开
-
2023年12月3日已更新 R语言机器学习&深度学习千例 目录(已更新178篇)
深度学习,从入门到精通,专栏内含有讲解,每篇文章都含有对应的代码,会持续更新!原创 2023-10-17 17:01:44 · 810 阅读 · 6 评论 -
R语言深度学习:生成艺术品
生成对抗网络(GAN)是一种深度学习模型,由两个子网络组成:生成器(Generator)和判别器(Discriminator)。生成器负责生成新的样本(在本例中是艺术品),判别器则负责判断样本是真实的还是由生成器生成的。这两个子网络相互博弈,直到生成器生成的样本足够逼真,以至于判别器无法区分。原创 2023-10-13 23:54:29 · 151 阅读 · 0 评论 -
使用决策树进行信用卡欺诈检测——基于R语言的实践
欢迎大家阅读我的博客,我是一名对深度学习和机器学习有着浓厚兴趣的数据科学家。今天我们将一起学习如何使用决策树进行信用卡欺诈检测,并使用R语言进行实战。决策树是一种常用的分类方法,其基本思想是根据一系列规则,将复杂的决策过程简单化,从而实现对数据样本的分类。在信用卡欺诈检测中,我们可以通过构建决策树模型,来预测某一笔交易是否存在欺诈风险。原创 2023-10-13 23:51:37 · 555 阅读 · 0 评论 -
用R语言开发语音助手应用:打造你自己的Siri、Alexa或Google Assistant
无论是苹果的Siri、亚马逊的Alexa还是谷歌的Google Assistant,它们都能够通过自然语言处理和人工智能技术为用户提供智能化的服务。如果你也想开发一个类似的语音助手应用,但又想用不同于传统的语言,那么本文将为你介绍如何使用R语言来实现这一目标。在本文中,我们将从头开始构建一个基本的语音助手应用,并逐步添加功能,以使其更强大和智能。接下来,我们将构建一个基本的用户界面,用于接收用户的语音输入并显示助手的回应。安装这些包的方法是使用R的包管理器,如。原创 2023-10-13 23:49:32 · 288 阅读 · 0 评论 -
使用R语言实现循环神经网络RNN进行文本生成
首先,让我们回顾一下循环神经网络(Recurrent Neural Networks,RNN)的基本概念。RNN是一种深度学习技术,特别适合处理序列数据,如时间序列和文本数据。RNN的关键特性是它的隐藏状态,这个状态可以捕捉到当前输入之前的信息。这使得RNN能够利用前面的信息来影响后续的输出,从而对序列数据进行有效的处理。原创 2023-05-09 08:51:56 · 506 阅读 · 0 评论 -
R语言深度学习实战之路:从入门到精通,一篇博客带您开启学习之旅|五十篇实战案例
亲爱的读者朋友们,大家好!今天,我想向大家推荐一个特别的专栏:《R语言深度学习实战之路:从入门到精通》。在这个专栏中,我们将通过50篇精选文章,带领大家逐步探索深度学习在R语言中的实际应用,无论您是初学者还是有一定经验的开发者,都能从这个专栏中受益匪浅。原创 2023-05-08 22:15:56 · 484 阅读 · 0 评论 -
无人机协同避障航迹规划
本文主要研究了无人机在特定环境下的航线优化问题,我们通过数学模型和优化算法,实现了无人机飞行时间的最小化,进一步提升了无人机的作业效率。具体研究问题包括无人机在指定速度和指定距离条件下的最优航线选择,以及参数变化对最优航线选择的影响。在问题一中,我们首先针对两架无人机的飞行条件,建立了飞行时间的数学模型,设定目标为无人机A最先到达目的地,使用算法求解最优飞行路径,并通过仿真实验验证了模型的准确性。在问题二中。原创 2023-08-17 13:13:26 · 422 阅读 · 0 评论 -
R语言深度学习图像去噪的艺术
图像去噪是指从图像中删除噪声或不必要的像素,以提高图像的质量和可视化效果。这些噪声可以是由图像传感器、图像采集设备或传输过程引入的,如高感光度、低光照条件或压缩算法等。原创 2023-09-17 12:38:39 · 139 阅读 · 1 评论 -
基于支持向量机(SVM)的手写字体识别:R语言实现
手写字体识别一直是计算机视觉和机器学习领域中的热门问题。在过去的几十年里,研究人员开发了各种各样的算法来尝试解决这个问题,而其中一个最成功的方法是使用支持向量机(SVM)。这篇博客文章将会引导你使用R语言来实现一个基于SVM的手写字体识别系统。原创 2023-07-04 08:43:31 · 172 阅读 · 0 评论 -
R语言深度学习驱动的课程推荐:基于关联规则挖掘的实践
本文介绍了如何使用深度学习方法中的关联规则挖掘进行课程推荐。我们使用R语言实现了课程推荐的代码,并详细解释了算法的原理和实施步骤。通过关联规则挖掘,我们能够从学生选课数据中挖掘有价值的关联规则,为学生提供个性化的课程推荐。希望本文的内容能够帮助读者理解和应用关联规则挖掘算法,实现个性化的课程推荐。通过深入研究和实践,我们可以进一步探索和改进课程推荐的方法和技术,提升教育领域的学习效果和用户体验。原创 2023-07-17 11:29:40 · 227 阅读 · 0 评论 -
使用K-均值聚类进行市场细分:R语言机器学习实战
本文演示了如何在R中使用K-均值聚类进行市场细分。我们介绍了整个机器学习流程,包括数据预处理,确定最佳的K值,模型训练,以及结果解释。在我们开始之前,让我们简单解释一下什么是K-均值聚类。K-均值聚类是一种无监督学习方法,它将数据点分组到K个集群中,每个集群的中心是该集群所有点的平均值。在进行K-均值聚类之前,我们需要对数据进行预处理。在进行K-均值聚类之前,我们需要确定最佳的K值。最后,我们需要解释聚类结果,并基于此进行市场细分。确定了最佳的K值后,我们将进行模型训练。原创 2023-07-04 08:57:12 · 173 阅读 · 0 评论 -
R语言实现推荐系统
在这篇博客中,我们将探讨如何使用R语言来构建一个推荐系统。推荐系统是一种信息过滤系统,它可以预测用户对物品的评价或者兴趣,常见于电商平台、音乐平台、电影网站等。我们将从理论基础开始,然后逐步介绍实践步骤,最终构建一个简单的电影推荐系统。原创 2023-05-11 15:26:14 · 271 阅读 · 0 评论 -
2023深圳杯 C题无人机协同避障航迹规划 最新论文
目录无人机协同避障航迹规划摘要一、 问题重述1 . 1 背景1 . 2 重述二、 模型的假设三、 符号说明四、 问题分析4 . 1 问题一分析4 . 2 问题二分析4 . 3 问题三分析4 . 4 问题四分析4 . 5 问题五分析五、 模型的建立与求解5 . 1 问题一模型的建立与求解5 . 2 问题二模型的建立与求解5 . 3 问题三模型的建立与求解5 . 5 问题五模型的建立与求解六、优缺点6 . 1 模型的优点6 . 2 模型的缺点6 . 3 模型的改进与推广参考文献原创 2023-08-13 14:55:50 · 1030 阅读 · 0 评论 -
R语言实践利用深度学习进行医疗图像分析:基于人工神经网络
医疗图像分析是人工智能在医疗健康领域的重要应用之一,可以帮助医生进行疾病诊断和治疗。在本文中,我们将探讨如何使用深度学习,特别是人工神经网络,来进行医疗图像分析。我们将使用R语言进行实践。原创 2023-07-01 15:31:28 · 194 阅读 · 0 评论 -
R语言用深度学习实现手写字符和数字识别
这个项目将包括数据集的准备、模型的构建和训练、以及最终的识别性能评估。深度学习在图像识别任务中有着广泛的应用,您可以根据自己的需求和兴趣进一步探索和扩展这个项目。我们将使用卷积神经网络(Convolutional Neural Network,CNN)来构建我们的手写字符和数字识别模型。在每个epoch结束时,模型将在验证集上进行评估,并记录训练和验证的损失以及准确度。我们将使用MNIST数据集,它包含了大量的手写数字图像,每个图像都标有相应的数字。我们将使用之前准备的训练数据来训练我们的模型。原创 2023-09-17 12:15:00 · 107 阅读 · 0 评论 -
R语言深度学习:智能监控系统与异常行为检测
本文介绍了使用R语言进行深度学习的方法,并演示了如何使用深度学习模型对智能监控系统进行异常行为检测。具体来说,我们使用了keras和magick等包来加载、预处理和训练图像数据,并使用卷积神经网络模型对数据进行建模和预测。最后,我们使用预测结果和阈值来对新数据进行异常行为检测,并输出结果。总的来说,本文的思路清晰、步骤详细、代码实现完整,适合初学者入门深度学习,并希望为智能监控系统提供异常行为检测方案的研究者参考。原创 2023-05-14 23:35:53 · 214 阅读 · 0 评论 -
R语言实现文本情感分析
在本博客中,我们介绍了如何使用R语言进行文本情感分析。我们讨论了文本预处理、特征提取、模型构建和评估的过程。我们使用了IMDb电影评论数据集,并展示了如何使用随机森林和支持向量机进行情感分析。情感分析是自然语言处理(NLP)领域的一个重要任务,可以广泛应用于社交媒体分析、市场调查和客户反馈分析等领域。希望本博客能帮助您更好地理解和应用文本情感分析技术。原创 2023-05-08 18:28:44 · 742 阅读 · 0 评论 -
使用深度学习和R语言进行肺部疾病诊断:X射线图像分析
传统的X射线图像解读通常需要经验丰富的医生,但随着深度学习技术的发展,我们可以利用计算机来辅助医生进行肺部疾病的诊断。本博客介绍了如何使用深度学习和R语言来进行肺部疾病的诊断,通过构建卷积神经网络模型,并使用X射线图像数据集进行训练和评估。此外,我们还可以进一步优化模型,增加数据集的多样性,以提高模型的性能。未来,随着深度学习技术的不断发展,我们可以期待更精确的肺部疾病诊断模型,并且可以将其整合到医疗健康系统中,帮助医生更快速、更准确地诊断患者的健康问题。首先,我们需要加载所需的R语言库,并下载数据集。原创 2023-09-16 21:24:32 · 225 阅读 · 0 评论 -
使用R语言使用梯度提升算法进行预测建模
梯度提升算法是一种集成学习方法,它通过将多个弱学习器组合起来构建一个强大的预测模型。它基于梯度下降的思想,通过迭代地训练弱学习器来最小化损失函数。每一轮迭代中,新的弱学习器都会尝试纠正之前学习器的错误,以提高整体模型的性能。原创 2023-07-03 12:41:47 · 177 阅读 · 0 评论 -
用R语言构建卷积神经网络实现图像分类:CIFAR-10案例研究
CIFAR-10是一个包含10个类别的图像数据集,每个类别包含6000张32x32像素的彩色图像。这个数据集用于机器学习和计算机视觉领域的基准测试。它包含了以下10个类别的图像:飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。我们的任务是训练一个CNN模型,使其能够将这些图像准确分类到相应的类别中。原创 2023-09-16 14:48:46 · 391 阅读 · 1 评论 -
R语言深度学习:基于深度学习的情感识别与分析
情感分析是自然语言处理领域的一个重要任务,它的目标是确定给定文本的情感倾向。情感分析有许多应用,比如舆情监控、产品评论分析、客户服务等。在这篇文章中,我们将使用深度学习技术构建一个情感分析模型。在这篇博客文章中,我们展示了如何使用R语言和深度学习技术进行情感分析。我们首先读取并处理了数据,然后构建和训练了一个深度学习模型,最后在测试数据上评估了模型的性能,也使用模型对新的文本进行了情感分析。深度学习是一个强大的工具,它可以处理各种复杂的问题,包括情感分析。原创 2023-05-13 23:40:33 · 200 阅读 · 0 评论 -
使用R语言进行深度学习超参数优化
超参数是指那些不由模型自身学习的参数,而是在训练前需要手动设置的参数,如学习率、批量大小、层数、神经元数量等。本博客将介绍如何使用R语言来自动化深度学习模型的超参数优化,以提高模型的性能和效率。在R语言中,我们可以使用许多深度学习框架来构建和训练深度学习模型,其中最流行的框架之一是Keras。一旦完成超参数优化,您可以使用最佳超参数组合来训练您的深度学习模型。随机搜索(Random Search):随机搜索是一种更高效的超参数优化方法,它在超参数的随机组合中进行搜索,可以更快地找到较好的超参数。原创 2023-09-17 12:11:29 · 171 阅读 · 0 评论 -
如何使用R语言构建超越人类表现的深度学习模型
从任务定义、数据收集、模型构建、训练、到模型评估和推广,每个步骤都经过详细的解释和示范。超越人类表现需要坚韧不拔的努力和深度学习的熟练掌握,但它代表了深度学习领域的最高追求。在这个充满挑战和机会的时代,我们将探讨如何使用R语言构建一个在某个特定任务上超越人类表现的深度学习模型。要构建一个超越人类表现的模型,需要大量高质量的训练数据。在这个示例中,我们下载了CIFAR-10图像分类数据集,并进行了数据预处理,包括图像归一化和标签的独热编码。一旦模型训练完成,我们需要评估模型的性能,并进行必要的调优。原创 2023-09-18 12:00:01 · 87 阅读 · 0 评论 -
R语言深度学习:强化学习入门
在今天的博客中,我们将一起探索强化学习(Reinforcement Learning)的世界。强化学习是深度学习的一个重要领域,它让机器通过与环境的交互,学习如何做出最优的决策。在这篇博客中,我们将使用R语言实现一个简单的强化学习算法,让机器学习如何玩一个简单的游戏。在开始之前,你需要有一些基本的R语言编程和深度学习的知识,以便更好地理解这篇博客的内容。原创 2023-05-09 09:29:57 · 362 阅读 · 0 评论 -
利用深度学习进行遥感图像分析 R语言
遥感图像分析是一项关键的科学和工程任务,可用于监测地球表面的变化、资源管理、自然灾害监测等多个领域。近年来,深度学习技术的崛起为遥感图像分析提供了新的工具和方法,能够更准确地从大量遥感数据中提取有价值的信息。在遥感图像分析中,卷积神经网络(Convolutional Neural Networks,CNNs)通常是处理图像数据的首选模型。上述代码展示了遥感图像分析的一个示例,包括实际图像、真实类别和模型的预测结果。在实际应用中,您可以根据具体的遥感图像分析任务对模型进行进一步的评估和部署。原创 2023-09-16 21:41:47 · 306 阅读 · 0 评论 -
2023年深圳杯数学建模B题分析
【代码】2023年深圳杯数学建模B题分析。原创 2023-08-17 13:12:35 · 349 阅读 · 0 评论 -
R语言使用长短期记忆网络(LSTM)进行时间序列分析
然而,时间序列分析通常涉及复杂的模型和技术,如ARIMA模型,状态空间模型等,这些模型的理解和应用需要丰富的统计知识。未来,你可以试着用更复杂的数据集来练习,如股票价格或者天气数据,你也可以尝试使用不同的网络结构,如GRU或者卷积神经网络(CNN),来看看是否能够得到更好的预测结果。在本例中,我们将使用R中的AirPassengers数据集,这个数据集记录了从1949年到1960年期间,每个月的国际航班乘客数量。现在,我们已经准备好了我们的训练和测试数据,下一步就是构建我们的LSTM模型。原创 2023-07-03 12:09:34 · 1654 阅读 · 0 评论 -
R语言深度学习:变分自动编码器VAE生成新样本
接下来,我们定义变分自动编码器模型。编码器和解码器的结构与常规的自动编码器相似,但编码器的输出不仅包含编码后的特征向量,还包含标准差向量,用于计算编码后的特征向量的分布范围。我们使用技巧来处理标准差向量,将它们与均值向量合并,并通过重参数化公式进行采样。具体实现如下:latent_dim原创 2023-05-09 09:38:56 · 346 阅读 · 0 评论 -
R语言基于随机森林的特征选择:深入理解与实践
特征选择是在构建模型之前选择数据中最重要的特征的过程。正确的特征选择可以提高模型的性能,降低过拟合的可能性,减少训练时间,提高模型的可解释性。原创 2023-07-03 12:38:27 · 271 阅读 · 0 评论 -
使用R语言进行股票价格预测
在这篇博客中,我们使用了R语言和深度学习(具体为LSTM模型)预测了股票价格。我们首先获取并预处理了数据,然后构建了一个LSTM模型并进行了训练。我们还对模型的预测结果进行了评估,并提出了两种可能的优化策略:增加滞后时间步长和调整模型结构及参数。请注意,尽管我们的模型在测试集上表现得相当不错,但股票市场的预测仍然是非常复杂的,因为它受到许多无法预测的因素的影响,如经济条件、政策变动、突发事件等。因此,这个模型和代码仅供学习和参考,并不构成投资建议。优化深度学习模型通常需要反复试验和调整。原创 2023-05-10 17:01:22 · 1184 阅读 · 2 评论 -
R语言使用DBSCAN进行异常检测:从机器学习的视角
在数据分析中,异常检测是一种重要的任务,用于发现数据集中不符合预期的观察值,也被称为离群值。离群值可能是由于各种原因产生的,包括测量错误、异常行为等。一种常用的异常检测方法是基于密度的空间聚类应用(DBSCAN)。在本文中,我们将深入探讨如何使用R语言和DBSCAN进行异常检测。原创 2023-07-02 12:38:15 · 183 阅读 · 0 评论 -
R语言深度学习:基因组学与生物信息学应用
在本文中,我们介绍了如何在R语言中使用深度学习,并展示了如何应用于基因表达预测、生物序列分析和基因网络推断等问题。尽管深度学习需要大量的数据和计算资源,但其在处理复杂生物数据方面的潜力使其在未来的生物信息学研究中扮演了重要角色。R语言,作为一种专门针对统计计算和图形表示的编程语言,其强大的数据处理和统计分析功能使其在生物信息学中具有广泛的应用。在这个模型中,我们首先创建了一个空的序贯模型,然后添加了三层。具体来说,我们可以查看第二层(即编码层)的权重,这些权重可以看作是基因之间的连接强度。原创 2023-05-11 15:47:16 · 317 阅读 · 0 评论 -
使用逻辑回归预测患者是否患有特定疾病:R语言机器学习实战
逻辑回归是一种用于处理二元分类问题的常用模型,非常适合预测患者是否患有特定疾病(例如,是或否)。我们演示了整个机器学习流程,包括数据预处理,模型训练和评估。首先,我们需要导入必要的R库和数据集。在这个例子中,我们使用一个假设的医疗数据集,其中包含患者的各种生理参数和他们是否被诊断为特定疾病。在进行逻辑回归之前,我们需要对数据进行预处理。数据预处理和探索完成后,我们将进行模型训练。模型训练完成后,我们将使用测试集进行预测,并评估模型的性能。接下来,我们通过绘制图表来探索数据,理解变量间的关系。原创 2023-07-04 08:55:18 · 293 阅读 · 0 评论 -
使用R语言使用主题模型进行文档分类
主题模型的核心思想是每个文档都是由一些隐含的主题构成的,而这些主题可以通过分析文档的词频来推断出来。一种常见的主题模型是潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)。原创 2023-07-03 12:40:27 · 217 阅读 · 0 评论 -
使用R语言实现生成对抗网络(GANs):生成逼真图像与人脸生成
在开始训练之前,我们需要定义一些训练参数,包括迭代次数、批量大小和噪声维度。原创 2023-09-26 17:44:51 · 251 阅读 · 0 评论 -
R语言利用深度学习构建网络安全入侵检测系统
数据集中包含了大量的特征,包括与网络流量相关的数值和分类属性,以及目标变量“attack_type”,表示每个网络连接的攻击类型。数据集中包含了大量的特征,包括与网络流量相关的数值和分类属性,以及目标变量“attack_type”,表示每个网络连接的攻击类型。在构建入侵检测系统之前,我们需要一个合适的数据集,以用于模型的训练和测试。:这种方法关注网络流量的行为模式,通过分析流量数据中的异常行为来检测潜在的攻击。:将不同类型的网络数据,如流量数据、日志数据和传感器数据,结合起来进行入侵检测,以提高检测精度。原创 2023-09-16 21:44:04 · 204 阅读 · 0 评论 -
R语言使用YOLO和Faster R-CNN进行目标检测
目标检测是计算机视觉中的一个任务,它旨在识别图像或视频中的物体,并确定它们的位置。与图像分类不同,目标检测需要为每个物体生成一个边界框(Bounding Box),并将其与相应的类别标签关联起来。这使得目标检测适用于各种应用,包括智能监控、自动驾驶、物体识别和跟踪等。YOLO是一种以速度为主要优势的目标检测算法。其名称"YOLO"代表"You Only Look Once",意味着在单个前向传递中,YOLO可以同时预测图像中的多个物体的位置和类别。原创 2023-09-26 17:39:02 · 216 阅读 · 0 评论 -
用R语言实现无监督学习的数据表示学习
在这篇博客中,我将为你详细解析如何使用R语言实现无监督学习的数据表示学习。我们将使用主成分分析(PCA)的方法,以此为例,详述每一个步骤。这是一种常见的无监督学习方法,用于提取数据集的主要特征。原创 2023-05-11 15:06:55 · 172 阅读 · 0 评论 -
基于深度学习的图像风格迁移:使用R语言和神经网络进行艺术创作
以上便是使用R语言和Keras进行图像风格迁移的全过程。数据准备:选择好我们的内容图像和风格图像,并对它们进行预处理。模型构建:我们使用预训练的VGG19模型,并从中选取特定的层作为内容层和风格层。损失函数定义:定义内容损失、风格损失和总变差损失。内容损失保证生成图像和内容图像在内容上的相似性,风格损失保证生成图像和风格图像在风格上的相似性,总变差损失使生成图像更加平滑。模型训练:通过优化算法不断调整生成图像,使其最小化总损失函数。结果展示:最后,我们将生成的图像进行后处理并展示出来。原创 2023-05-10 17:40:05 · 181 阅读 · 0 评论 -
使用XGBoost在R语言中进行点击率(CTR)预测
XGBoost是一种机器学习算法,被广泛应用于各种数据科学竞赛中,如Kaggle比赛,因其高效的性能和出色的准确率而受到了广泛的赞誉。XGBoost全称为“Extreme Gradient Boosting”,是一种基于梯度提升决策树算法的优化版。原创 2023-07-02 12:46:09 · 187 阅读 · 0 评论