题目链接:https://www.acwing.com/problem/content/4/
题意:有 N 种物品和一个容量是 V 的背包。
第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。
数据范围
0<N,V≤100
0<vi,wi,si≤100
输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10
思路:其实多重背包可以看作01背包的扩展,01背包在于选和不选i,而多重背包就是选几个i;这就只需要在状态转移的时候多加一层循环便可。(其他细节问题可以看01背包问题来回顾)
代码实现:
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 110;
int n, m;
int f[N];
int main()
{
cin >> n >> m;
for(int i = 0; i < n; i ++ ){
int v, w, s;
cin >> v >> w >> s;
for(int j = m; j >= 0; j -- )
//如果体积都超过了内存j就直接不用再循环了
for(int k = 1; k <=s && k * v <= j; k ++ )
f[j] = max(f[j], f[j - k * v] + k * w);
}
cout << f[m] << endl;
return 0;
}