拆分-Nim游戏

题目链接
题意:给定n堆石子,两位玩家轮流操作,每次操作可以取走其中的一堆石子,然后放入两堆规模更小的石子(新堆规模可以为0,且两个新堆的石子总数可以大于取走的那堆石子数),最后无法进行操作的人视为失败。
问如果两人都采用最优策略,先手是否必胜。
输入格式
第一行包含整数n。
第二行包含n个整数,其中第i个整数表示第i堆石子的数量ai。
输出格式
如果先手方必胜,则输出“Yes”。
否则,输出“No”。
数据范围
1≤n,ai≤100
输入样例:
2
2 3
样例输出:
Yes
思路
首先sg函数的定义:sg(x)表示x下一步能到达状态集合的最小不包含自然数;每一个状态都是一个起点,终点的sg是0,层层递归可以找到起点的sg值;如若n堆石子的n个起点的sg值异或起来为0,那么先手必输,反正就赢。(在上一篇博客里每个状态都是一个固定起点,但这一个题就是两个不同状态的起点,所以需要来个两重循环枚举起点状态,并两两异或起来就是对于状态i,j为起点的sg值 )
代码实现:

#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_set>
using namespace std;
const int N = 110, M = 10010;
int f[N];
int sg(int x)
{
    if(f[x] != -1) return f[x];
    //每次都有更新定义,所以每个起点的下一状态都是一个set集合
    unordered_set<int> S;
    for(int i = 0; i < x; i ++)
        for(int j = 0; j <= i; j ++)
            S.insert(sg(i) ^ sg(j));
    //mex操作
    for(int i = 0; ; i ++)
        if(!S.count(i))
           return f[x] = i;
}

int main()
{
    int n;
    cin >> n;
    int res = 0;
    memset(f, -1, sizeof f);
    for(int i = 0; i < n; i ++){
        int x;
        cin >> x;
        res ^= sg(x);
    }
    if(res) puts("Yes");
    else puts("No");
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值