题目链接
题意:给定n堆石子,两位玩家轮流操作,每次操作可以取走其中的一堆石子,然后放入两堆规模更小的石子(新堆规模可以为0,且两个新堆的石子总数可以大于取走的那堆石子数),最后无法进行操作的人视为失败。
问如果两人都采用最优策略,先手是否必胜。
输入格式
第一行包含整数n。
第二行包含n个整数,其中第i个整数表示第i堆石子的数量ai。
输出格式
如果先手方必胜,则输出“Yes”。
否则,输出“No”。
数据范围
1≤n,ai≤100
输入样例:
2
2 3
样例输出:
Yes
思路:
首先sg函数的定义:sg(x)表示x下一步能到达状态集合的最小不包含自然数;每一个状态都是一个起点,终点的sg是0,层层递归可以找到起点的sg值;如若n堆石子的n个起点的sg值异或起来为0,那么先手必输,反正就赢。(在上一篇博客里每个状态都是一个固定起点,但这一个题就是两个不同状态的起点,所以需要来个两重循环枚举起点状态,并两两异或起来就是对于状态i,j为起点的sg值 )
代码实现:
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_set>
using namespace std;
const int N = 110, M = 10010;
int f[N];
int sg(int x)
{
if(f[x] != -1) return f[x];
//每次都有更新定义,所以每个起点的下一状态都是一个set集合
unordered_set<int> S;
for(int i = 0; i < x; i ++)
for(int j = 0; j <= i; j ++)
S.insert(sg(i) ^ sg(j));
//mex操作
for(int i = 0; ; i ++)
if(!S.count(i))
return f[x] = i;
}
int main()
{
int n;
cin >> n;
int res = 0;
memset(f, -1, sizeof f);
for(int i = 0; i < n; i ++){
int x;
cin >> x;
res ^= sg(x);
}
if(res) puts("Yes");
else puts("No");
return 0;
}