题目
给定 n 堆石子,两位玩家轮流操作,每次操作可以取走其中的一堆石子,然后放入两堆规模更小的石子(新堆规模可以为 0,且两个新堆的石子总数可以大于取走的那堆石子数),最后无法进行操作的人视为失败。
问如果两人都采用最优策略,先手是否必胜。
输入格式
第一行包含整数 n。
第二行包含 n 个整数,其中第 i 个整数表示第 i 堆石子的数量 ai。
输出格式
如果先手方必胜,则输出 Yes。
否则,输出 No。
数据范围
1≤n,ai≤100
输入样例:
2
2 3
输出样例:
Yes
思路
对比于集合nim游戏,其他步骤都一样,只不过此时局面的变化用一个循环来遍历(分成两堆规模更小的石子),并且求其sg值
for(int i = 0; i < x; i ++)
for(int j = 0; j <= i; j ++)
S.insert(sg(i) ^ sg(j));
代码
#include<iostream>
#include<cstring>
#include<unordered_set>
using namespace std;
const int N = 110;
int f[N];
int sg(int x)
{
if(f[x] != -1) return f[x];
unordered_set<int> S;
for(int i = 0; i

这是一个关于两人玩石子游戏的问题,其中每个玩家可以在回合中取走一堆石子,并将其分为两堆更小的石子。游戏的目标是让对手无法进行操作。题目提供了输入输出样例,并解释了思路,涉及到了一种类似nim游戏的策略,通过计算sg值来决定先手是否必胜。代码部分展示了如何计算sg值并判断先手是否必胜。
最低0.47元/天 解锁文章
480

被折叠的 条评论
为什么被折叠?



