拆分——nim游戏

这是一个关于两人玩石子游戏的问题,其中每个玩家可以在回合中取走一堆石子,并将其分为两堆更小的石子。游戏的目标是让对手无法进行操作。题目提供了输入输出样例,并解释了思路,涉及到了一种类似nim游戏的策略,通过计算sg值来决定先手是否必胜。代码部分展示了如何计算sg值并判断先手是否必胜。

题目

给定 n 堆石子,两位玩家轮流操作,每次操作可以取走其中的一堆石子,然后放入两堆规模更小的石子(新堆规模可以为 0,且两个新堆的石子总数可以大于取走的那堆石子数),最后无法进行操作的人视为失败。

问如果两人都采用最优策略,先手是否必胜。

输入格式

第一行包含整数 n。

第二行包含 n 个整数,其中第 i 个整数表示第 i 堆石子的数量 ai。

输出格式

如果先手方必胜,则输出 Yes

否则,输出 No

数据范围

1≤n,ai≤100

输入样例:

2
2 3

输出样例:

Yes

思路

对比于集合nim游戏,其他步骤都一样,只不过此时局面的变化用一个循环来遍历(分成两堆规模更小的石子),并且求其sg值

	for(int i = 0; i < x; i ++)
		for(int j = 0; j <= i; j ++)
			S.insert(sg(i) ^ sg(j));

代码

#include<iostream>
#include<cstring>
#include<unordered_set>

using namespace std;

const int N = 110;

int f[N];

int sg(int x)
{
	if(f[x] != -1) return f[x];
	
	unordered_set<int> S;
	
	for(int i = 0; i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值