题意: 最开始有一个权重为1的细胞,每个细胞可以在白天选择分裂(或不分裂)成两个等权重的小细胞,但晚上每个细胞都必会增长一个权重。
试问最少多少天所以细胞的权重和可以正好等于n?并输出每天进行分裂的细胞数目(满足条件的方案即可)。若不能正好等于n,则直接输出-1。
思路:
- 在第一天细胞可选择不分裂,则第二天总权重变成2;若选择分裂,则第二天总权重变成3。
- 依次类推知要想尽快达到权重n,则应让每天晚上能增重的细胞数最多(即尽可能的分裂)。
- 所以我们可以构造出每天分裂的细胞数列:2 ^ 0,2 ^ 1,2 ^ 3 ……2 ^ x(满足sum <= n,x表示第几天)。这其实也相当于每天增重的序列,这样就可得到每天细胞增重的做大值。
- 若序列和sum == n,则直接输出x即可。若序列和sum != n ,那么最小天数就是x + 1;再将n - sum加入序列,将序列进行排序,第 i 天进行分裂的细胞数即为a[i] - a[i - 1]。
代码实现:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <cctype>
#include <cstring>
#include <iostream>
#include <sstream>
#include <string>
#include <list>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <algorithm>
#include <functional>
#define endl '\n'
#define null NULL
#define ll long long
#define int long long
#define pii pair<int, int>
#define lowbit(x) (x &(-x))
#define ls(x) x<<1
#define rs(x) (x<<1+1)
#define me(ar) memset(ar, 0, sizeof ar)
#define mem(ar,num) memset(ar, num, sizeof ar)
#define rp(i, n) for(int i = 0, i < n; i ++)
#define rep(i, a, n) for(int i = a; i <= n; i ++)
#define pre(i, n, a) for(int i = n; i >= a; i --)
#define IOS ios::sync_with_stdio(0); cin.tie(0);cout.tie(0);
const int way[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
using namespace std;
const int inf = 0x7fffffff;
const double PI = acos(-1.0);
const double eps = 1e-6;
const ll mod = 1e9 + 7;
const int N = 2e5 + 5;
int t, n, a[N];
signed main()
{
IOS;
cin >> t;
while(t --){
cin >> n;
int tt = 0;
memset(a, 0, sizeof a);
//开始构造序列
for(int i = 1; i <= n; i <<= 1){
a[tt ++] = i;
n -= i;
}
//这里若n != 0的话,那么现在的n即为初值的n 减去sum
if(n) a[tt ++] = n;
sort(a, a + tt);
cout << tt - 1 << endl;
for(int i = 1; i < tt; i ++)
cout << a[i] - a[i - 1] << " ";
cout << endl;
}
return 0;
}