根据数学上的组合数公式:
...................①
...................②
由①和②相加除以二可得到公式③:
............................................................③
又因为,所以 ③ = .
又因为公式④:
...............................................④
所以③和④相加除以二便得到了答案。
代码实现:
#include<bits/stdc++.h>
#define endl '\n'
#define null NULL
#define ll long long
#define int long long
#define pii pair<int, int>
#define lowbit(x) (x &(-x))
#define ls(x) x<<1
#define rs(x) (x<<1+1)
#define me(ar) memset(ar, 0, sizeof ar)
#define mem(ar,num) memset(ar, num, sizeof ar)
#define rp(i, n) for(int i = 0, i < n; i ++)
#define rep(i, a, n) for(int i = a; i <= n; i ++)
#define pre(i, n, a) for(int i = n; i >= a; i --)
#define IOS ios::sync_with_stdio(0); cin.tie(0);cout.tie(0);
const int way[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
using namespace std;
const int inf = 0x3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-6;
const ll mod = 998244353;
const int N = 2e5 + 5;
inline void read(int &x){
char t=getchar();
while(!isdigit(t)) t=getchar();
for(x=t^48,t=getchar();isdigit(t);t=getchar()) x=x*10+(t^48);
}
int qmi(int a, int k){
int res = 1;
while(k){
if(k & 1) res = (ll)res * a % mod;
k >>= 1;
a = (ll)a * a % mod;
}
return res;
}
signed main()
{
IOS;
int n; cin >> n;
int ans = qmi(4, n/4);
if((n/4)&1) ans = -ans+mod;
int res = qmi(2, n-1);
ans = (ans+res)%mod*qmi(2, mod-2)%mod;
cout << ans << endl;
return 0;
}