F. 组合数问题 (组合数推公式&逆元) (2021牛客寒假算法基础集训营6)

博客介绍了如何使用数学上的组合数公式来求解模意义下的幂次问题。通过公式推导和代码实现,展示了计算特定指数的快速幂算法,特别是在n为4的倍数或奇数时的情况。最后,给出了C++代码实现,用于计算给定整数n下幂次的模反元素。
摘要由CSDN通过智能技术生成

传送门

思路:学习大佬博客1大佬博客2

根据数学上的组合数公式:

(1+i)^{n} = C_{n}^{0} +iC_{n}^{1} - C_{n}^{2} - iC_{n}^{3} + C_{n}^{4}.........................①

(1-i)^{n} = C_{n}^{0} - iC_{n}^{1} - C_{n}^{2} + iC_{n}^{3} + C_{n}^{4}.........................②

由①和②相加除以二可得到公式③:

C_{n}^{0} - C_{n}^{2} + C_{n}^{4}..................................................................③

又因为(1+i)^{4} = (1-i)^{4} = -4,所以 ③ = (-4)^{n/4}.

又因为公式④:

C_{n}^{0} + C_{n}^{2} + C_{n}^{4} ...... = 2^{n-1}...............................................④

所以③和④相加除以二便得到了答案。

代码实现:

#include<bits/stdc++.h>
#define endl '\n'
#define null NULL
#define ll long long
#define int long long
#define pii pair<int, int>
#define lowbit(x) (x &(-x))
#define ls(x) x<<1
#define rs(x) (x<<1+1)
#define me(ar) memset(ar, 0, sizeof ar)
#define mem(ar,num) memset(ar, num, sizeof ar)
#define rp(i, n) for(int i = 0, i < n; i ++)
#define rep(i, a, n) for(int i = a; i <= n; i ++)
#define pre(i, n, a) for(int i = n; i >= a; i --)
#define IOS ios::sync_with_stdio(0); cin.tie(0);cout.tie(0);
const int way[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
using namespace std;
const int  inf = 0x3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-6;
const ll   mod = 998244353;
const int  N = 2e5 + 5;

inline void read(int &x){
    char t=getchar();
    while(!isdigit(t)) t=getchar();
    for(x=t^48,t=getchar();isdigit(t);t=getchar()) x=x*10+(t^48);
}

int qmi(int a, int k){
    int res = 1;
    while(k){
        if(k & 1) res = (ll)res * a % mod;
        k >>= 1;
        a = (ll)a * a % mod;
    }
    return res;
}

signed main()
{
    IOS;

    int n; cin >> n;
    int ans = qmi(4, n/4);
    if((n/4)&1) ans = -ans+mod;
    int res = qmi(2, n-1);
    ans = (ans+res)%mod*qmi(2, mod-2)%mod;
    cout << ans << endl;

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值