思路:
* 首先就是常规的dfs求根节点到其他所有点的距离和。如若x为根节点,y为x的直系子节点,那么y所在子树对x的贡献为dis[y]+cnt[y],dis[y]为y到以y为根节点的所有子树节点的距离和,cnt[y]为y做根节点的所有子树节点数。
* 再进行换根dp处理。在将根节点从x移动到y的时候,dp[y] = dp[x]-cnt[y]+(n-cnt[y);其中的-cnt[y]是将以y引申出来的cnt[y]条路径都-1,而+(n-cnt[y])是将从x引申出来的不包含y的其他路径都+1.
代码实现:
#include<bits/stdc++.h>
#define endl '\n'
#define null NULL
#define ll long long
#define int long long
#define pii pair<int, int>
#define lowbit(x) (x &(-x))
#define ls(x) x<<1
#define rs(x) (x<<1+1)
#define me(ar) memset(ar, 0, sizeof ar)
#define mem(ar,num) memset(ar, num, sizeof ar)
#define rp(i, n) for(int i = 0, i < n; i ++)
#define rep(i, a, n) for(int i = a; i <= n; i ++)
#define pre(i, n, a) for(int i = n; i >= a; i --)
#define IOS ios::sync_with_stdio(0); cin.tie(0);cout.tie(0);
const int way[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
using namespace std;
const int inf = 0x3f3f3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-6;
const ll mod = 1e9+7;
const int N = 1e6+10;
inline void read(int &x){
char t=getchar();
while(!isdigit(t)) t=getchar();
for(x=t^48,t=getchar();isdigit(t);t=getchar()) x=x*10+(t^48);
}
int n, dis[N], cnt[N], dp[N], vis[N];
vector<int> ve[N];
void dfs(int x){
vis[x] = 1;
int sum = 0;
for(int i = 0; i < ve[x].size(); i ++){
int y = ve[x][i];
if(!vis[y]){
dfs(y);
sum += cnt[y];
dis[x] += dis[y]+cnt[y];
}
}
cnt[x] = sum+1;
}
void DP(int x){
vis[x] = 1;
for(int i = 0; i < ve[x].size(); i ++){
int y = ve[x][i];
if(!vis[y]){
dp[y] = dp[x]-cnt[y]+(n-cnt[y]);
DP(y);
}
}
}
signed main()
{
IOS;
cin >> n;
for(int i = 1; i < n; i ++){
int a, b; cin >> a >> b;
ve[a].push_back(b);
ve[b].push_back(a);
}
me(vis); dfs(1); me(vis);
for(int i = 1; i <= n; i ++)
dp[i] = dis[i];
DP(1);
int ans = inf;
for(int i = 1; i <= n; i ++)
ans = min(ans, dp[i]);
cout << ans << endl;
return 0;
}