换根dp(啊啊啊啊啊)

本文讲解了如何使用深度优先搜索(DFS)计算有向树中每个节点到根节点的贡献,以及如何通过换根动态规划(DP)技巧优化距离和的求解过程。关键步骤包括dfs遍历获取子树信息和dp更新根节点的贡献。代码实例展示了整个算法的实现过程。
摘要由CSDN通过智能技术生成

传送门

 

思路:

  *  首先就是常规的dfs求根节点到其他所有点的距离和。如若x为根节点,y为x的直系子节点,那么y所在子树对x的贡献为dis[y]+cnt[y],dis[y]为y到以y为根节点的所有子树节点的距离和,cnt[y]为y做根节点的所有子树节点数。

  *  再进行换根dp处理。在将根节点从x移动到y的时候,dp[y] = dp[x]-cnt[y]+(n-cnt[y);其中的-cnt[y]是将以y引申出来的cnt[y]条路径都-1,而+(n-cnt[y])是将从x引申出来的不包含y的其他路径都+1.

代码实现:

#include<bits/stdc++.h>
#define endl '\n'
#define null NULL
#define ll long long
#define int long long
#define pii pair<int, int>
#define lowbit(x) (x &(-x))
#define ls(x) x<<1
#define rs(x) (x<<1+1)
#define me(ar) memset(ar, 0, sizeof ar)
#define mem(ar,num) memset(ar, num, sizeof ar)
#define rp(i, n) for(int i = 0, i < n; i ++)
#define rep(i, a, n) for(int i = a; i <= n; i ++)
#define pre(i, n, a) for(int i = n; i >= a; i --)
#define IOS ios::sync_with_stdio(0); cin.tie(0);cout.tie(0);
const int way[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
using namespace std;
const int  inf = 0x3f3f3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-6;
const ll   mod = 1e9+7;
const int  N = 1e6+10;

inline void read(int &x){
    char t=getchar();
    while(!isdigit(t)) t=getchar();
    for(x=t^48,t=getchar();isdigit(t);t=getchar()) x=x*10+(t^48);
}

int n, dis[N], cnt[N], dp[N], vis[N];
vector<int> ve[N];

void dfs(int x){
    vis[x] = 1;
    int sum = 0;
    for(int i = 0; i < ve[x].size(); i ++){
        int y = ve[x][i];
        if(!vis[y]){
            dfs(y);
            sum += cnt[y];
            dis[x] += dis[y]+cnt[y];
        }
    }
    cnt[x] = sum+1;
}

void DP(int x){
    vis[x] = 1;
    for(int i = 0; i < ve[x].size(); i ++){
        int y = ve[x][i];
        if(!vis[y]){
            dp[y] = dp[x]-cnt[y]+(n-cnt[y]);
            DP(y);
        }
    }
}

signed main()
{
    IOS;

    cin >> n;
    for(int i = 1; i < n; i ++){
        int a, b; cin >> a >> b;
        ve[a].push_back(b);
        ve[b].push_back(a);
    }
    me(vis); dfs(1); me(vis);
    for(int i = 1; i <= n; i ++)
        dp[i] = dis[i];
    DP(1);
    int ans = inf;
    for(int i = 1; i <= n; i ++)
        ans = min(ans, dp[i]);

    cout << ans << endl;

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值