初始时有 n 个灯泡关闭。 第 1 轮,你打开所有的灯泡。 第 2 轮,每两个灯泡你关闭一次。 第 3 轮,每三个灯泡切换一次开关(如果关闭则开启,如果开启则关闭)。第 i 轮,每 i 个灯泡切换一次开关。 对于第 n 轮,你只切换最后一个灯泡的开关。 找出 n 轮后有多少个亮着的灯泡。
示例:
输入: 3
输出: 1
解释:
初始时, 灯泡状态 [关闭, 关闭, 关闭].
第一轮后, 灯泡状态 [开启, 开启, 开启].
第二轮后, 灯泡状态 [开启, 关闭, 开启].
第三轮后, 灯泡状态 [开启, 关闭, 关闭].
你应该返回 1,因为只有一个灯泡还亮着。
思路:数学题:对于第n个灯泡,只有当次数是n的因子的之后,才能改变灯泡的状态,即n能被当前次数整除,比如当n为36时,它的因数有(1,36), (2,18), (3,12), (4,9), (6,6), 可以看到前四个括号里成对出现的因数各不相同,括号中前面的数改变了灯泡状态,后面的数又变回去了,等于灯泡的状态没有发生变化,只有最后那个(6,6),在次数6的时候改变了一次状态,没有对应其它的状态能将其变回去了,所以灯泡就一直是点亮状态的。所以所有平方数都有这么一个相等的因数对,即所有平方数的灯泡都将会是点亮的状态。其余的灯泡都是灭着的。那么问题就简化为了求1到n之间完全平方数的个数
class Solution {
public:
int bulbSwitch(int n) {
int re=1;
while(re*re<=n) re++;
return re-1;
}
};