前言
本文记录微积分学习过程中,一些需要记忆的内容,留待复习之用。
一、导数公式表
d
C
d
x
=
0
\frac{d\ C}{dx}=0
dxd C=0
d
x
a
d
x
=
a
x
a
−
−
1
\frac{d\ x^a}{dx}=ax^{a--1}
dxd xa=axa−−1
d
a
x
d
x
=
a
x
l
n
a
\frac{d\ a^x}{dx}={a^xlna}
dxd ax=axlna
d
l
o
g
a
x
d
x
=
1
x
l
n
a
\frac{d\ log_ax}{dx}=\frac{1}{xlna}
dxd logax=xlna1
d
s
i
n
x
d
x
=
c
o
s
x
\frac{d\ sinx}{dx}=cosx
dxd sinx=cosx
d
c
o
s
x
d
x
=
−
s
i
n
x
\frac{d\ cosx}{dx}=-sinx
dxd cosx=−sinx
d
t
g
x
d
x
=
s
e
c
2
x
\frac{d\ tgx}{dx}=sec^2x
dxd tgx=sec2x
d
c
t
g
x
d
x
=
−
c
s
c
2
x
\frac{d\ ctgx}{dx}=-csc^2x
dxd ctgx=−csc2x
d
s
e
c
x
d
x
=
s
e
c
x
t
g
x
\frac{d\ secx}{dx}=secxtgx
dxd secx=secxtgx
d
c
s
c
x
d
x
=
−
c
s
c
x
c
t
g
x
\frac{d\ cscx}{dx}=-cscxctgx
dxd cscx=−cscxctgx
d
a
r
c
s
i
n
x
d
x
=
1
1
−
x
2
\frac{d\ arcsinx}{dx}=\frac{1}{\sqrt{1-x^2}}
dxd arcsinx=1−x21
d
a
r
c
c
o
s
x
d
x
=
−
1
1
−
x
2
\frac{d\ arccosx}{dx}=\frac{-1}{\sqrt{1-x^2}}
dxd arccosx=1−x2−1
d
a
r
c
t
g
x
d
x
=
1
1
+
x
2
\frac{d\ arctgx}{dx}=\frac{1}{1+x^2}
dxd arctgx=1+x21
d
a
r
c
c
t
g
x
d
x
=
−
1
1
+
x
2
\frac{d\ arcctgx}{dx}=\frac{-1}{1+x^2}
dxd arcctgx=1+x2−1
d
a
r
c
c
t
g
x
d
x
=
−
1
1
+
x
2
\frac{d\ arcctgx}{dx}=\frac{-1}{1+x^2}
dxd arcctgx=1+x2−1
d
s
h
x
d
x
=
c
h
x
\frac{d\ shx}{dx}=chx
dxd shx=chx
d
c
h
x
d
x
=
s
h
x
\frac{d\ chx}{dx}=shx
dxd chx=shx
d
t
h
x
d
x
=
1
c
h
2
x
\frac{d\ thx}{dx}=\frac{1}{ch^2x}
dxd thx=ch2x1
二、积分公式
∫
0
d
x
=
C
\int{0\ dx}=C
∫0 dx=C
∫
x
a
d
x
=
x
a
+
1
a
+
1
+
C
\int{x^a\ dx}=\frac{x^{a+1}}{a+1}+C
∫xa dx=a+1xa+1+C
∫
1
x
d
x
=
l
n
∣
x
∣
+
C
\int{\frac{1}{x}\ dx}=ln|x|+C
∫x1 dx=ln∣x∣+C
∫
a
x
d
x
=
a
x
l
n
a
+
C
\int{a^x\ dx}=\frac{a^x}{lna}+C
∫ax dx=lnaax+C
∫
c
o
s
x
d
x
=
s
i
n
x
+
C
\int{cosx\ dx}=sinx+C
∫cosx dx=sinx+C
∫
s
i
n
x
d
x
=
−
c
o
s
x
+
C
\int{sinx\ dx}=-cosx+C
∫sinx dx=−cosx+C
∫
s
e
c
2
x
d
x
=
t
g
x
+
C
\int{sec^2x\ dx}=tgx+C
∫sec2x dx=tgx+C
∫
c
s
c
2
x
d
x
=
−
c
t
g
x
+
C
\int{csc^2x\ dx}=-ctgx+C
∫csc2x dx=−ctgx+C
∫
1
1
−
x
2
d
x
=
a
r
c
s
i
n
x
+
C
\int{\frac{1}{\sqrt{1-x^2}}\ dx}=arcsinx+C
∫1−x21 dx=arcsinx+C
∫
1
1
+
x
2
d
x
=
a
r
c
t
g
x
+
C
\int{\frac{1}{{1+x^2}}\ dx}=arctgx+C
∫1+x21 dx=arctgx+C
∫
s
e
c
x
d
x
=
l
n
∣
s
e
c
x
+
t
g
x
∣
+
C
\int{secx\ dx}=ln|secx+tgx|+C
∫secx dx=ln∣secx+tgx∣+C
∫
c
s
c
x
d
x
=
l
n
∣
c
s
c
x
−
c
t
g
x
∣
+
C
\int{cscx\ dx}=ln|cscx-ctgx|+C
∫cscx dx=ln∣cscx−ctgx∣+C
∫
s
e
c
x
t
g
x
d
x
=
s
e
c
x
+
C
\int{secxtgx\ dx}=secx+C
∫secxtgx dx=secx+C
∫
c
s
c
x
t
g
x
d
x
=
−
c
s
c
x
+
C
\int{cscxtgx\ dx}=-cscx+C
∫cscxtgx dx=−cscx+C
∫
s
h
x
d
x
=
c
h
x
+
C
\int{shx\ dx}=chx+C
∫shx dx=chx+C
∫
c
h
x
d
x
=
s
h
x
+
C
\int{chx\ dx}=shx+C
∫chx dx=shx+C
总结
Markdown写公式真累。