基本导数与不定积分表


前言

本文记录微积分学习过程中,一些需要记忆的内容,留待复习之用。

一、导数公式表

d   C d x = 0 \frac{d\ C}{dx}=0 dxd C=0
d   x a d x = a x a − − 1 \frac{d\ x^a}{dx}=ax^{a--1} dxd xa=axa−−1
d   a x d x = a x l n a \frac{d\ a^x}{dx}={a^xlna} dxd ax=axlna
d   l o g a x d x = 1 x l n a \frac{d\ log_ax}{dx}=\frac{1}{xlna} dxd logax=xlna1
d   s i n x d x = c o s x \frac{d\ sinx}{dx}=cosx dxd sinx=cosx
d   c o s x d x = − s i n x \frac{d\ cosx}{dx}=-sinx dxd cosx=sinx
d   t g x d x = s e c 2 x \frac{d\ tgx}{dx}=sec^2x dxd tgx=sec2x
d   c t g x d x = − c s c 2 x \frac{d\ ctgx}{dx}=-csc^2x dxd ctgx=csc2x
d   s e c x d x = s e c x t g x \frac{d\ secx}{dx}=secxtgx dxd secx=secxtgx
d   c s c x d x = − c s c x c t g x \frac{d\ cscx}{dx}=-cscxctgx dxd cscx=cscxctgx
d   a r c s i n x d x = 1 1 − x 2 \frac{d\ arcsinx}{dx}=\frac{1}{\sqrt{1-x^2}} dxd arcsinx=1x2 1
d   a r c c o s x d x = − 1 1 − x 2 \frac{d\ arccosx}{dx}=\frac{-1}{\sqrt{1-x^2}} dxd arccosx=1x2 1
d   a r c t g x d x = 1 1 + x 2 \frac{d\ arctgx}{dx}=\frac{1}{1+x^2} dxd arctgx=1+x21
d   a r c c t g x d x = − 1 1 + x 2 \frac{d\ arcctgx}{dx}=\frac{-1}{1+x^2} dxd arcctgx=1+x21
d   a r c c t g x d x = − 1 1 + x 2 \frac{d\ arcctgx}{dx}=\frac{-1}{1+x^2} dxd arcctgx=1+x21
d   s h x d x = c h x \frac{d\ shx}{dx}=chx dxd shx=chx
d   c h x d x = s h x \frac{d\ chx}{dx}=shx dxd chx=shx
d   t h x d x = 1 c h 2 x \frac{d\ thx}{dx}=\frac{1}{ch^2x} dxd thx=ch2x1

二、积分公式

∫ 0   d x = C \int{0\ dx}=C 0 dx=C
∫ x a   d x = x a + 1 a + 1 + C \int{x^a\ dx}=\frac{x^{a+1}}{a+1}+C xa dx=a+1xa+1+C
∫ 1 x   d x = l n ∣ x ∣ + C \int{\frac{1}{x}\ dx}=ln|x|+C x1 dx=lnx+C
∫ a x   d x = a x l n a + C \int{a^x\ dx}=\frac{a^x}{lna}+C ax dx=lnaax+C
∫ c o s x   d x = s i n x + C \int{cosx\ dx}=sinx+C cosx dx=sinx+C
∫ s i n x   d x = − c o s x + C \int{sinx\ dx}=-cosx+C sinx dx=cosx+C
∫ s e c 2 x   d x = t g x + C \int{sec^2x\ dx}=tgx+C sec2x dx=tgx+C
∫ c s c 2 x   d x = − c t g x + C \int{csc^2x\ dx}=-ctgx+C csc2x dx=ctgx+C
∫ 1 1 − x 2   d x = a r c s i n x + C \int{\frac{1}{\sqrt{1-x^2}}\ dx}=arcsinx+C 1x2 1 dx=arcsinx+C
∫ 1 1 + x 2   d x = a r c t g x + C \int{\frac{1}{{1+x^2}}\ dx}=arctgx+C 1+x21 dx=arctgx+C
∫ s e c x   d x = l n ∣ s e c x + t g x ∣ + C \int{secx\ dx}=ln|secx+tgx|+C secx dx=lnsecx+tgx+C
∫ c s c x   d x = l n ∣ c s c x − c t g x ∣ + C \int{cscx\ dx}=ln|cscx-ctgx|+C cscx dx=lncscxctgx+C
∫ s e c x t g x   d x = s e c x + C \int{secxtgx\ dx}=secx+C secxtgx dx=secx+C
∫ c s c x t g x   d x = − c s c x + C \int{cscxtgx\ dx}=-cscx+C cscxtgx dx=cscx+C
∫ s h x   d x = c h x + C \int{shx\ dx}=chx+C shx dx=chx+C
∫ c h x   d x = s h x + C \int{chx\ dx}=shx+C chx dx=shx+C

总结

Markdown写公式真累。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值