数据结构之二叉树及其Python实现

目录

二叉树

二叉树的基本概念

二叉树的性质(特性)

二叉树的节点表示以及树的创建

二叉树的遍历

深度优先遍历

广度优先遍历(层次遍历)


二叉树

二叉树的基本概念

二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)

二叉树的性质(特性)

  • 性质1: 在二叉树的第i层上至多有2^(i-1)个结点(i>0)
  • 性质2: 深度为k的二叉树至多有2^k - 1个结点(k>0)
  • 性质3: 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;
  • 性质4:具有n个结点的完全二叉树的深度必为 log2(n+1)
  • 性质5:对完全二叉树,若从上至下、从左至右编号,则编号为i 的结点,其左孩子编号必为2i,其右孩子编号必为2i+1;其双亲的编号必为i/2(i=1 时为根,除外)

(1)完全二叉树——若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第h层有叶子结点,并且叶子结点都是从左到右依次排布,这就是完全二叉树。

(2)满二叉树——除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树。

 

二叉树的节点表示以及树的创建

通过使用Node类中定义三个属性,分别为elem本身的值,还有lchild左孩子和rchild右孩子

class Node(object):
    """节点类"""
    def __init__(self, elem=-1, lchild=None, rchild=None):
        self.elem = elem
        self.lchild = lchild
        self.rchild = rchild

树的创建,创建一个树的类,并给一个root根节点,一开始为空,随后添加节点

class Tree(object):
    """树类"""
    def __init__(self, root=None):
        self.root = root

    def add(self, elem):
        """为树添加节点"""
        node = Node(elem)
        #如果树是空的,则对根节点赋值
        if self.root == None:
            self.root = node
        else:
            queue = []
            queue.append(self.root)
            #对已有的节点进行层次遍历
            while queue:
                #弹出队列的第一个元素
                cur = queue.pop(0)
                if cur.lchild == None:
                    cur.lchild = node
                    return
                elif cur.rchild == None:
                    cur.rchild = node
                    return
                else:
                    #如果左右子树都不为空,加入队列继续判断
                    queue.append(cur.lchild)
                    queue.append(cur.rchild)

 

 

 

二叉树的遍历

树的遍历是树的一种重要的运算。所谓遍历是指对树中所有结点的信息的访问,即依次对树中每个结点访问一次且仅访问一次,我们把这种对所有节点的访问称为遍历(traversal)。那么树的两种重要的遍历模式是深度优先遍历和广度优先遍历,深度优先一般用递归,广度优先一般用队列。一般情况下能用递归实现的算法大部分也能用堆栈来实现。

深度优先遍历

对于一颗二叉树,深度优先搜索(Depth First Search)是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。
那么深度遍历有重要的三种方法。这三种方式常被用于访问树的节点,它们之间的不同在于访问每个节点的次序不同。这三种遍历分别叫做先序遍历(preorder),中序遍历(inorder)和后序遍历(postorder)。我们来给出它们的详细定义,然后举例看看它们的应用。

  • 先序遍历 在先序遍历中,我们先访问根节点,然后递归使用先序遍历访问左子树,再递归使用先序遍历访问右子树
    根节点->左子树->右子树
    def preorder(self, root):
          """递归实现先序遍历"""
          if root == None:
              return
          print root.elem
          self.preorder(root.lchild)
          self.preorder(root.rchild)
    
  • 中序遍历 在中序遍历中,我们递归使用中序遍历访问左子树,然后访问根节点,最后再递归使用中序遍历访问右子树
    左子树->根节点->右子树
    def inorder(self, root):
          """递归实现中序遍历"""
          if root == None:
              return
          self.inorder(root.lchild)
          print root.elem
          self.inorder(root.rchild)
    
  • 后序遍历 在后序遍历中,我们先递归使用后序遍历访问左子树和右子树,最后访问根节点
    左子树->右子树->根节点
    def postorder(self, root):
          """递归实现后续遍历"""
          if root == None:
              return
          self.postorder(root.lchild)
          self.postorder(root.rchild)
          print root.elem
    

 

 

按照如图树的结构写出三种遍历的顺序:


结果:
先序:a b c d e f g h
中序:b d c e a f h g
后序:d e c b h g f a
思考:哪两种遍历方式能够唯一的确定一颗树???

 

广度优先遍历(层次遍历)

从树的root开始,从上到下从从左到右遍历整个树的节点

def breadth_travel(self, root):
        """利用队列实现树的层次遍历"""
        if root == None:
            return
        queue = []
        queue.append(root)
        while queue:
            node = queue.pop(0)
            print node.elem,
            if node.lchild != None:
                queue.append(node.lchild)
            if node.rchild != None:
                queue.append(node.rchild)

这里只简单介绍了二叉树,Python 二叉树,及其简单遍历。后续会陆续整理更多二叉树相关应用、算法。

 

更多:Python 目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值