离散傅立叶变换DFT
一维DFT
在文献1的第四章中,式(4.2.5)和式(4.2.6)分别给出了(单变量的)一维离散傅立叶变换和反变换:
F(u)=1M∑x=0M−1f(x)e−j2πux/Mu=0,1,2,…,M−1
f(x)=∑u=0M−1F(u)ej2πux/Mx=0,1,2,…,M−1
有时候,前边的系数 1M 会发生变化,但其乘积仍然为 1M ,常见的情况如下:
F(u)=1M−−√∑x=0M−1f(x)e−j2πux/Mu=0,1,2,…,M−1
f(x)=∑u=0M−11M−−√F(u)ej2πux/Mx=0,1,2,…,M−1
在此,我们可以以第一组变换对为主来记忆 DFT。
二维DFT
同时,文献2中接着给出了式(4.2.16)和式(4.2.17)所示的二维离散傅立叶变换和反变换:
F(u,v)=1MN∑x=0

本文深入探讨了离散傅立叶变换(DFT)的一维和二维形式,引用了相关文献中的公式,并详细介绍了离散余弦变换(DCT),包括一维和二维的DCT定义,提供了相关参考文献来源。
最低0.47元/天 解锁文章
699

被折叠的 条评论
为什么被折叠?



