DCT 离散余弦变换讲解(无数学公式)

文章介绍了JPEG图像压缩中的DCT(离散余弦变换)原理,通过将图像分解为8x8子图像并应用DCT,转换成不同频率的波。利用傅立叶变换的思想,任何函数(波)都可视为多个三角函数的叠加。在压缩过程中,高频部分被量化并忽略,以达到高效压缩。量化后的结果通过哈夫曼编码进一步减小存储需求。在解码时,通过逆DCT恢复图像。
摘要由CSDN通过智能技术生成

本文是油管视频:JPEG DCT, Discrete Cosine Transform (JPEG Pt2)- Computerphile

JPEG DCT, Discrete Cosine Transform (JPEG Pt2)- Computerphile

的一个总结和个人理解。 截图均来自该视频, 文字是我自己的一些理解(因为是我自己的理解,而并非是翻译,所以投稿为原创), 大家会英文的话可以去看看原视频,讲解的很出色。

DCT 可以说是非常广泛的应用在图像和视频压缩领域的一项技术

也是jpeg图像(一种有损压缩图像)的关键技术之一。我们简单讲一下:

我们再处理一张图时, 我们可以把一张很大的图片分成很多个8*8 的子图像。

我们假设有一个8*8 的子图像,我们先提取图像的亮度信息(其实对于色度也是一样的处理方法)

基于亮度信息, 我们可以将一张图像分成8个纵向波 或 8个横向波。

这里所说的波就是 灰度图像 8*8 这个图像矩阵的某一行或某一列

例如: 我们有一个8*8的图像(如上图), 我取第一行:

62, 55&#x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值