详解DFT与DCT的联系与差别

本文深入探讨了一维和二维离散傅立叶变换(DFT)的原理,包括DFT的Matlab实现,以及1D-DFT和2D-DFT的频谱特点,强调了中心化思想在频谱分析中的重要性。此外,还介绍了离散余弦变换(DCT)的优势,特别是其在图像处理中的能量压缩特性,并展示了如何通过DCT对图像进行处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、DFT原理及其Matlab实现

(一)1D-DFT

(二)2D-DFT

(三)1D-DFT和2D-DFT的频谱特点以及中心化思想

1.  1D-DFT的频谱特点

2.  2D-DFT的频谱特点

3.  在matlab中计算并可视化二维DFT

二、DCT变换

1.  1D-DCT

2.  2D-DCT

三、DCT的优点


一、DFT原理及其Matlab实现

(一)1D-DFT

先来看看1D-DFT,假如我们有长度为N的信号x(n),对其做DFT,得到

X(k)=\sum_{n=0}^{N-1}x[n]e^{-j2\pi \frac{nk}{N}}=\sum_{n=0}^{N-1}x[n]\left ( cos(\frac{2\pi kn}{N})-jsin(\frac{2\pi kn}{N}) \right )

将DFT的实部和虚部拆出来:

Re(X(k))=\sum_{n=0}^{N-1}x[n]cos(\frac{2\pi kn}{N})

Im(X(k))=\sum_{n=0}^{N-1}x[n]sin(\frac{2\pi kn}{N})

x(n)是实函数时,DFT的实部是偶函数,虚部是奇函数。

x(n)是实偶函数时,DFT的虚部就变成0了,结合图1进行理解。

图1

 所以,当时域信号是实偶信号时,我们就可以把DFT写成:

 X(k)=\sum_{n=0}^{N-1}x[n]e^{-j2\pi \frac{nk}{N}}=\sum_{n=0}^{N-1}x[n]cos(\frac{2\pi kn}{N})</

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值