我们知道,想要维护树上的一段区间,我们可以采用重链剖分来将其划分
但是,树链剖分只能够维护静态(树的形态不发生变化)的树,倘若我们需要动态对树的形态进行修改,比如将某个结点换为树的根、树中边的增删、子树合并和分离操作等,并需要在线地回答相关询问,那么每一次修改后,轻重链都需要重构,效率就会大大降低
所以,我们需要一种数据结构能够动态地维护树上的区间
这就是今天要用到的LCT
LCT是在1982年由Tarjan大佬等人提出的
LCT原理:
前提概念:
splay树:
一种通过splay操作来维护的平衡树
splay(u)可以将u结点旋转成为这棵平衡树的根
实链:
对于结点u而言,我们任意地选取一个儿子v,那么连接u与v的边就称作实边
实边的特点是儿子能够访问父亲,父亲也能够访问儿子,即:tr[u].s[1]或tr[u].s[0]==v且tr[v].p==u
全部由实边构成的链叫做实链
虚链:
对于结点u而言,除了一条实边外,其他连接儿子的边均为虚边
虚边的特点是儿子能够访问父亲,父亲不能够访问儿子,即:tr[v].p==u且tr[u].s[1]!=v&&tr[u].s[0]!=v
实现原理:
为了配合树的形态变化,我们定义LCT作为辅助树,这棵树是怎么得到的呢?
我们对原树进行虚实链剖分,且令每一条实链都成为一颗splay