面试题7:重建二叉树
题意:给你一颗二叉树的前序遍历和中序遍历,请重建该二叉树。
例如: 前序遍历:{1,2,4,7,3,5,6,8} 中序遍历{4,7,2,1,5,3,8,6}
如果理解前序遍历,中序遍历,那就很简单!
前序遍历的第一个节点是根;中序遍历中前序遍历出现的第一个值,它的左边的数是左子树,它的右边的数是右子树;
这样把一把大的树,变成一颗小的树,递归实现就好了。
#include <iostream>
#include <algorithm>
using namespace std;
#include <string>
#include <vector>
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
TreeNode* reConstructBinaryTree(vector<int> pre, vector<int> vin) {
if (pre.size() == 0 || vin.size() == 0) return NULL;
return ConstructCore(pre, vin);
}
TreeNode* ConstructCore(vector<int> pre, vector<int> vin)
{
int rootValue = pre[0];
TreeNode* root = new TreeNode(rootValue);
if (pre.size() == 1) return root;
int pos;
vector<int> newPre, newVin;
for (int i = 0; i<vin.size(); i++)
{
if (vin[i] == rootValue)
{
pos = i;
break;
}
}
for (int i = 1; i <= pos; i++) newPre.push_back(pre[i]);
for (int i = 0; i < pos; i++) newVin.push_back(vin[i]);
if (newPre.size()>0) root->left = ConstructCore(newPre, newVin);
newPre.clear();
newVin.clear();
for (int i=pos+1; i<pre.size(); i++)
{
newPre.push_back(pre[i]);
newVin.push_back(vin[i]);
}
if (newPre.size()>0) root->right = ConstructCore(newPre, newVin);
return root;
}
};
void show(TreeNode* root)
{
if (root != NULL)
{
cout << root->val;
show(root->left);
show(root->right);
}
return;
}
vector<int>a, b;
void init3()
{
a.push_back(1);
a.push_back(2);
a.push_back(4);
a.push_back(7);
a.push_back(3);
a.push_back(5);
a.push_back(6);
a.push_back(8);
b.push_back(4);
b.push_back(7);
b.push_back(2);
b.push_back(1);
b.push_back(5);
b.push_back(3);
b.push_back(8);
b.push_back(6);
}
void init1()
{
a.push_back(1);
b.push_back(1);
}
void init2()
{
a.push_back(1);
a.push_back(2);
a.push_back(3);
b.push_back(2);
b.push_back(1);
b.push_back(3);
}
int main()
{
init3();
Solution ss;
show(ss.reConstructBinaryTree(a, b));
return 0;
}
然后测试数据从只有一个节点,到三个节点,到多个节点,这样就出来了。
最后的最后,特殊的用例没有考虑,比如根节点为NULL,前序遍历中序遍历不匹配等等。