机器学习课程学习阶段总结

本文探讨了机器学习中的线性回归与逻辑回归,详细解释了两种方法的假设函数、代价函数及其求解过程。对于线性回归,通过最小化预测值与实际值之间的差距来求解参数;而对于逻辑回归,则通过特殊的假设函数实现分类任务。
摘要由CSDN通过智能技术生成

机器学习课程学习阶段总结

线性回归 & 逻辑回归

逻辑回归 是一种分类算法,和之前的线性回归不是同一类问题,但是对于处理问题上有相同的思想。 对于线性回归问题,有较容易理解的思路。首先指定一个形式确定的

hθ(x)=θTx

然后根据所有样本计算代价函数,距离的平方取平均再乘个系数:
J(θ)=12mmi=1(hθ(x(i))y(i))2

简单的理解就是根据假设函数得出的结果与实际样本的“远近”程度。我们希望求出代价函数最小值所在点对应向量 θ 。之后将 θ 带入到假设函数中,就得到较好的拟合结果。而代价函数中唯一的变量就是 θ ,所以可以通过求导(偏导数)的方法求出 θ

逻辑回归的假设函数不再是简单的

hθ(x)=θTx

而是更适合用于之后数学计算过程的
hθ(x)=g(θTx)

该假设函数的性质较特殊,可以最终通过判断 θTx 的正负来得出y=0或1。h(x)改变了,代价函数也跟着改变:根据样本的y=0或1有两段函数(涉及到log等,十分巧妙),同样的,我们希望求出代价函数的最小值对应的 θ ,由于 θ 是代价函数的唯一变量,可以求导(偏导)得到,经过求导,非常非常巧合,导函数的形式和线性回归一致(但是本质不一致,因为假设函数就完全不同),所以可以用梯度下降的方法求出来最小值,以及对应的 θ

最后视频介绍了 fmin函数,主要是有助于求出代价函数的最小值,函数采用更高级的算法,但是目的还是求解代价函数最小。所以,在使用高级函数前,我们要得到数学模型。 总而言之,求解这两类问题,首先确定 hθ(x) 的形式,然后确定 J(θ) 的形式, 再通过代入所有的样本,得到 J(θ) 的具体表达式。最后求 J(θ) 的最小值,以及对应的 θ , 放回 hθ(x) 中,得出结论。 ​ ​ ​ ​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值