文章目录
概述
K-近邻(KNN)
线性回归(Linear Regression)
线性判别式与逻辑回归(Linear Discriminant and Logistic Regression)
基于似然的分类(likelihood-based classification):
首先估计先验概率 P(Ci) 和类似然 p(x|Ci) ,再使用贝叶斯规则计算后验密度。然后使用后验密度定义的判别式函数,例如 gi(x)=log P(Ci|x)。
基于判别式的分类(discriminant-based classification):
对类之间的判别式形式进行假设,不对密度、输入是否相关做任何假设。在基于判别式的方法中,我们并不关注正确估计类区域的密度,我们所关注的是正确估计类区域之间的边界。
推广线性模型
二次判别式、增加高阶项

本文是对2019年秋季机器学习课程的总结,涵盖了K-近邻算法、线性回归、线性判别式与逻辑回归,深入探讨了基于似然和判别的分类方法,以及推广线性模型的应用。此外,还介绍了特征工程中的降维技术和人工神经网络的基本概念,包括感知机和神经网络。
最低0.47元/天 解锁文章

1267

被折叠的 条评论
为什么被折叠?



