72 两数之和-最接近值(Two Sum - Closest to target)

1 题目

题目:两数和-最接近值(Two Sum - Closest to target)
描述:给定整数数组num,从中找到两个数字使得他们和最接近target,返回两数和与 target 的差的 绝对值。

lintcode题号——533,难度——medium

样例1:

输入: nums = [-1, 2, 1, -4] 并且 target = 4
输出: 1
解释:
最小的差距是1,(4 - (2 + 1) = 1).

样例2:

输入: nums = [-1, -1, -1, -4] 并且 target = 4
输出: 6
解释:
最小的差距是6,(4 - (- 1 - 1) = 6).

2 解决方案

2.1 思路

  使用对向双指针的方式,两个指针分别从头尾开始向中间走,若指针指向的两个值的和大于目标值,则将右指针往左一步;若两个值的和小于或等于目标值,则右指针往左一步,在循环过程中进行打擂台,比较当前的差值和记录的最小值,直到数组遍历结束。

2.2 时间复杂度

  排序时间复杂度O(nlogn),查找的时间复杂度O(n),总时间复杂度为O(nlogn)。

2.3 空间复杂度

  空间复杂度为O(1)。

3 源码

细节:

  1. 使用对向双指针的方式。
  2. 需要先进行排序。
  3. 在循环过程中进行打擂台,若小于target,则left++,若大于target,则right–,每次都与之前的最近值进行比较即可。

C++版本:

/**
* @param nums: an integer array
* @param target: An integer
* @return: the difference between the sum and the target
*/
int twoSumClosest(vector<int> &nums, int target) {
    // write your code here
    int result = INT_MAX;
    if (nums.empty())
    {
        return -1;
    }

    // 先对数组进行排序
    sort(nums.begin(), nums.end());

    int left = 0;
    int right = nums.size() - 1;
    while (left < right)
    {
        if (nums.at(left) + nums.at(right) < target)
        {
            result = min(result, abs(target - (nums.at(left) + nums.at(right)))); // 打擂台找到最小差值
            left++;
        }
        else if (nums.at(left) + nums.at(right) > target)
        {
            result = min(result, abs(target - (nums.at(left) + nums.at(right)))); // 打擂台找到最小差值
            right--;
        }
        else
        {
            result = 0;
            break;
            left++;
            right--;
        }
    }

    return result;
}
### RANSAC-Based ICP Implementation in Python The Iterative Closest Point (ICP) algorithm is widely used for aligning point clouds. Incorporating the Random Sample Consensus (RANSAC) method enhances robustness against outliers during alignment processes. While Ziv Yaniv has implemented RANSAC using C++[^1], specific implementations combining both RANSAC and ICP within a single framework are less common but do exist. Below demonstrates how one might implement an RANSAC-based ICP approach in Python: #### Example Code of RANSAC-Based ICP Algorithm ```python import numpy as np from sklearn.neighbors import NearestNeighbors def best_fit_transform(A, B): """ Calculates the least-squares best-fit transform that maps corresponding points A to B. Args: A: Nx3 numpy array representing source points. B: Nx3 numpy array representing destination points. Returns: T: 4x4 homogeneous transformation matrix mapping from A to B. R: 3x3 rotation matrix component of T. t: 3x1 translation vector component of T. """ assert len(A) == len(B) # Get centroids of each set of points centroid_A = np.mean(A, axis=0) centroid_B = np.mean(B, axis=0) # Centered coordinates relative to respective centroids AA = A - centroid_A BB = B - centroid_B # Compute covariance matrix H between centered coordinate sets H = np.dot(AA.T, BB) # Perform singular value decomposition on H U, S, Vt = np.linalg.svd(H) # Calculate optimal rotation matrix R R = np.dot(Vt.T, U.T) # Special reflection case handling if np.linalg.det(R) < 0: Vt[-1,:] *= -1 R = np.dot(Vt.T, U.T) # Optimal translation vector calculation based on centroids difference after applying computed rotation t = centroid_B.T - np.dot(R,centroid_A.T) # Construct final rigid body motion transformation matrix incorporating calculated rotation & translation components T = np.identity(4) T[:3,:3] = R T[:3,3] = t return T, R, t def icp(A, B, init_pose=None, max_iterations=20, tolerance=0.001): ''' Performs iterative closest point matching with optional initial pose estimation Args: A: MxN numpy array containing source data points where N represents dimensionality typically being equal to three indicating spatial Cartesian XYZ positions. B: KxN numpy array holding target/reference dataset also having same dimensional structure like 'A'. init_pose: Initial guess at transformation relating two datasets expressed via affine/homogeneous representation; defaults None implying identity operation applied initially before iterations commence. max_iterations: Maximum number of times allowed loop execution until convergence criteria met or exceeded limit reached. tolerance: Threshold below which residual error change considered negligible signifying satisfactory fit quality achieved thus terminating procedure early. Yields: Transformation matrices iteratively refined throughout process along with associated registration errors per cycle completed. ''' src = np.ones((4,A.shape[0])) ref = np.ones((4,B.shape[0])) src[:3,:] = np.copy(A.T) ref[:3,:] = np.copy(B.T) prev_error = 0 if not isinstance(init_pose,np.ndarray): T = np.eye(4) else: T = init_pose nbrs = NearestNeighbors(n_neighbors=1, algorithm='ball_tree').fit(ref.T[:,:3]) for i in range(max_iterations): distances, indices = nbrs.kneighbors(np.dot(T,src).T[:,:3]) correspondences = zip(indices.flatten(),range(len(distances))) filtered_correspondence_pairs = [] for idx_src,idx_ref in list(correspondences): distance_to_nearest_neighbor = distances[idx_ref][0] if distance_to_nearest_neighbor<tolerance*10: filtered_correspondence_pairs.append([idx_ref,idx_src]) P = np.array(filtered_correspondence_pairs) if len(P)==0: break matched_source_points = src[:,P[:,0]] matched_reference_points = ref[:,P[:,1]] new_T,_,_ = best_fit_transform(matched_source_points[:-1].T, matched_reference_points[:-1].T) T = np.dot(new_T,T) mean_dist = sum([np.linalg.norm(src[:,i]-ref[:,j]) \ for j,i in filtered_correspondence_pairs])/len(filtered_correspondence_pairs) if abs(prev_error-mean_dist)<tolerance: break prev_error = mean_dist yield {'transformation':new_T,'error':mean_dist} def ransac_icp(source_pts, target_pts, num_iter=1000, threshold=0.05): """Implementation of RANSAC wrapper around basic ICP routine.""" best_inliers_ratio = 0 best_transf_matrix = None n_samples = min(3,source_pts.shape[0]) # Minimum sample size required by ICP function internally for _ in range(num_iter): sampled_indices = np.random.choice( range(source_pts.shape[0]), replace=False, size=n_samples) current_sampled_source = source_pts[sampled_indices] current_sampled_target = target_pts[sampled_indices] try: transf_gen = icp(current_sampled_source,current_sampled_target,max_iterations=1) for result in transf_gen: transformed_full_set = np.dot(result['transformation'],np.vstack((source_pts.T,np.ones((1,source_pts.shape[0]))))) residuals = ((transformed_full_set[:3].T-target_pts)**2).sum(axis=-1)**0.5 mask = residuals<threshold ratio_of_inliers = float(mask.sum())/float(residuals.size) if ratio_of_inliers>best_inliers_ratio: best_inliers_ratio=ratio_of_inliers
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值