1 题目
题目:重哈希(Rehashing)
描述:哈希表容量的大小在一开始是不确定的。如果哈希表存储的元素太多(如超过容量的十分之一),我们应该将哈希表容量扩大一倍,并将所有的哈希值重新安排。给定一个哈希表,返回重哈希后的哈希表。
// 哈希函数
int hashcode(int key, int capacity) {
return key % capacity;
}
lintcode题号——129,难度——medium
样例1:
输入:有如下一哈希表
size=3, capacity=4
[null, 21, 14, null]
↓ ↓
9 null
↓
null
输出:重建哈希表,将容量扩大一倍,我们将会得到
size=3, capacity=8
index: 0 1 2 3 4 5 6 7
hash : [null, 9, null, null, null, 21, 14, null]
解释:
原哈希表中有三个数字9,14,21,其中21和9共享同一个位置,因为它们有相同的哈希值1(21 % 4 = 9 % 4 = 1)。我们将它们存储在同一个链表中。新哈希表中没有冲突,它们被放在了不同的位置。
2 解决方案
2.1 思路
哈希表的扩容,容器大小不够用的时候,新建一个容量翻倍的新容器,对原容器的所有数据重新按照哈希函数,这里是按照open hashing的方式进行,在哈希表的元素位置上放置链表,需要逐个找到原哈希表内的数值一一处理。
closed hashing:一个位置只放一个元素,冲突的元素向后寻找空位放下。(缺点:由于find时有些元素被当作寻找正确元素的桥梁,所以在元素删除时候不能直接置空,而改为标记为delete,依然充当桥梁,多次操作后可能产生很多delete位置,影响性能)
open hashing :一个位置存放一个链表,新元素插入时从表头插入,find时不需要向后寻找,只需要遍历该位置的链表即可。
哈希表容量:哈希表的空间通常远大于需要存储的序列的元素个数,哈希size >> 数组size,通常大一个数量级,当哈希表的饱和度大于1/10的时候则需要rehash。
2.3 时间复杂度
遍历原哈希表中的所有元素,所以时间复杂度为O(n)。
2.4 空间复杂度
空间复杂度为O(1)。
3 源码
细节:
- 新建一个哈希表,并resize为原哈希表size的两倍,遍历原表的所有数值按照哈希函数重新放入新表。
- 向新表中添加的节点最好重新new出来,不要使用原来的。
C++版本:
/**
* Definition of ListNode
* class ListNode {
* public:
* int val;
* ListNode *next;
* ListNode(int val) {
* this->val = val;
* this->next = NULL;
* }
* }
*/
/**
* @param hashTable: A list of The first node of linked list
* @return: A list of The first node of linked list which have twice size
*/
vector<ListNode*> rehashing(vector<ListNode*> hashTable) {
// write your code here
vector<ListNode *> result;
result.resize(hashTable.size() * 2, nullptr);
for (auto it : hashTable)
{
while (it != nullptr)
{
addNodeToNew(result, it->val);
it = it->next;
}
}
return result;
}
// 向新哈希表插入值
void addNodeToNew(vector<ListNode *> & hashTable, int val)
{
int capacity = hashTable.size();
int position = hashcode(val, capacity); // 根据哈希函数计算位置
if (hashTable.at(position) == nullptr)
{
hashTable.at(position) = new ListNode(val);
}
else
{
addListNodeToNew(hashTable.at(position), val); // 在链表尾部插入节点
//ListNode * curNew = new ListNode(val); // 也可以直接在链表头部插入节点
//ListNode * temp = hashTable.at(position);
//curNew->next = temp;
//hashTable.at(position) = curNew;
}
}
// 在当前链表尾部插入新节点
void addListNodeToNew(ListNode * cur, int val)
{
if (cur->next == nullptr) // 如果没有后续节点
{
cur->next = new ListNode(val); // 直接插入
}
else
{
addListNodeToNew(cur->next, val); // 递归找到最后一个位置再插入
}
}
// 哈希函数
int hashcode(int key, int capacity)
{
int result = key % capacity;
if (result < 0)
{
result += capacity;
}
return result;
}