94 跳跃游戏(Jump Game)

1 题目

题目:跳跃游戏(Jump Game)
描述:给出一个非负整数数组,你最初定位在数组的第一个位置。数组中的每个元素代表你在那个位置可以跳跃的最大长度。判断你是否能到达数组的最后一个位置。

lintcode题号——116,难度——medium

样例1:

输入:A = [2,3,1,1,4]
输出:true
解释:0 -> 1 -> 4(这里的数字为下标)是一种合理的方案。

样例2:

输入:A = [3,2,1,0,4]
输出:false
解释:不存在任何方案能够到达终点。

2 解决方案

2.1 思路

  使用动态规划的方式解,将状态定义为表示是否能够走到位置i,则第i个位置可达的条件——第j个位置可达、且第j个位置上的数字加上j能够超过i,满足条件即可判断第i个位置可达,理清动态规划的四要素即可解出。

2.2 时间复杂度

  本题动态规划的多重循环是对同一维的下标进行的,相当于在一个耗时n的循环内嵌套了同为耗时n的循环,时间复杂度为O(n^2)。

2.3 空间复杂度

  使用了容量为n的数组,空间复杂度为O(n)。

3 源码

细节:

  1. 动态规划的四要素:状态、方程、初始化、答案。(四要素在之前的题目数字三角形1中有详细介绍)
  2. 状态:用dp[i]表示是否能够走到位置i。
  3. 方程:第i个位置可达的条件——第j个位置可达、且第j个位置上的数字加上j能够超过i,满足条件即可判断dp[i] = true
  4. 初始化:dp[0] = true,起点是第一个位置,所以可以到达。
  5. 答案:最后一个位置是否可达,即dp[max]

C++版本:

/**
* @param A: A list of integers
* @return: A boolean
*/
bool canJump(vector<int> &A) {
    // write your code here
    if (A.empty())
    {
        return true;
    }

    // 状态:dp[i]表示是否能够走到位置i
    vector<int> dp(A.size(), false);

    // 初始化:起点是第一个位置,所以可以到达
    dp[0] = true;

    for (int i = 0; i < dp.size(); i++)
    {
        for (int j = 0; j < i; j++)
        {
            // 方程:第i个位置可达的条件——第j个位置可达、且第j个位置上的数字加上j能够超过i
            if (dp[j] == true && A[j] + j >= i)
            {
                dp[i] = true;
            }
        }
    }

    return dp[dp.size() - 1]; // 答案:最后一个位置是否可达
}

  1. 数字三角形:https://blog.csdn.net/SeeDoubleU/article/details/124678103 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值