(算法 动态规划dp)最优时间表问题

一台精密仪器的工作时间为 n 个时间单位。与仪器工作时间同步进行若干仪器维修程序。一旦启动维修程序,仪器必须进入维修程序。如果只有一个维修程序启动,则必须进入该维修程序。如果在同一时刻有多个维修程序,可任选进入其中的一个维修程序。维修程序必须从头开始,不能从中间插入。一个维修程序从第s个时间单位开始,持续t个时间单位,则该维修程序在第s+t-1个时间单位结束。为了提高仪器使用率,希望安排尽可能少的维修时间。编程任务:对于给定的维修程序时间表,编程计算最优时间表。

输入
第 1 行有2 个正整数n和 k(1≤n,k≤9999)。n表示仪器的工作时间单位;k是维修程序数。接下来的k行中,每行有2个表示维修程序的整数s和 t,该维修程序从第s个时间单位开始,持续t个时间单位。

输出
最少维修时间。

样例输入
15 6
1 2
1 6
4 11
8 5
8 1
11 5

样例输出
11

思路:

  1. 当前时间为i
  2. s[i]==0:当前时间没有维修程序开始 dp[i]=dp[i+1];当前时间没有维修程序开始 dp[i]=dp[i+1];
  3. s[i]>0:有s[i]个维修程序在i时刻开始,这s[i]个维修程序中第j(范围[0,s[i]-1]) 个维修程序所需要执行的时间存为T[i* 100000+j] 然后dp[i]=min(dp[i+T[i* 100000+j]]+T[i*100000+j])
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值