我用加强版RFM模型,轻松扒出B站优质up主!(含数据+实战代码)

↑ 关注 + 星标 ~ 别错过有趣内容

 

不管前浪还是后浪,能够浪起来的才算是好浪。

相信大家最近都被号称“浪里白条”的b站刷了不止一次屏。这次咱们先不谈价值观,主要从数据的角度,扒一扒让b站能够在浪里穿梭的资本——优质UP主。

本文在RFM模型基础上做了调整,尝试用更符合b站特性的IFL模型,找到各分区优质up主。整个过程以分析项目的形式展开,最终附上了完整源数据和代码,方便感兴趣的同学练手。

项目概览

  分析目的

对2019年1月~2020年3月发布的视频进行分析,挑选出视频质量高,值得关注的up主。

  数据来源

分析数据基于 bilibili 网站上的公开信息,主要爬取了以下数据维度:

2019年1月~2020年3月,科技区播放量过5w视频的分区名称、作者名称、作者id、发布时间、播放数、硬币数、弹幕数、收藏数、点赞数、分享数、评论数,共计50130行。

  源数据下载链接

后台回复“b站”,获取完整数据源和代码。

数据概览

视频信息表:

coins:投硬币数

danmu:弹幕数

favorite:收藏数

likes:点赞数

replay:评论数

share:分享数

view:播放量

各字段数量:

缺失值数量:

数据清洗

  删除空值

df = df.dropna()
df.info()

共删除了19行数据,剩余50111行数据

  删除重复值

df = df.drop_duplicates()
df.info()

删除了1312行重复的数据,剩余数据量48799行

  提取所需关键词

df = df[['分区', 'author','date','coins','danmu','favorite','likes','replay','share','view']]
df.head()

构建模型

RFM模型是衡量客户价值和创利能力的重要工具和手段。通过一个客户近期购买行为、购买的总体频率以及消费金额三项指标来描述客户的价值状况。

R:最近一次消费时间(最近一次消费到参考时间的间隔)

F:消费的频率(消费了多少次)

M:消费的金额 (总消费金额)

但RFM模型并不能评价视频的质量,所以在这里针对up主的视频信息构建了IFL模型,以评估视频的质量。

I(Interaction_rate):

I值反映的是平均每个视频的互动率,互动率越高,表明其视频更能产生用户的共鸣,使其有话题感。

F(Frequence):

F值表示的是每个视频的平均发布周期,每个视频之间的发布周期越短,说明内容生产者创作视频的时间也就越短,创作时间太长,不是忠实粉丝的用户可能将其遗忘。

L(Like_rate):

L值表示的是统计时间内发布视频的平均点赞率,越大表示视频质量越稳定,用户对up主的认可度也就越高。

  提取需要的信息

根据不同的分区进行IFL打分,这里以科普区为例

sc = df.loc[df['分区']=='科学科普']
so = df.loc[df['分区']=='社科人文']
ma = df.loc[df['分区']=='机械']
tec = df.loc[df['分区']=='野生技术协会']
mi = df.loc[df['分区']=='星海'] # 一般发布军事内容
car = df.loc[df['分区']=='汽车']
sc.info()

  关键词构造

F值:首先,先筛选出发布视频大于5的up主,视频播放量在5W以上的视频数少于5,说明可能是有些视频标题取得好播放量才高,而不是视频质量稳定的up主。

# 计算发布视频的次数
count = sc.groupby('author')['date'].count().reset_index()
count.columns =['author','times']
# 剔除掉发布视频少于5的up主
com_m = count[count['times']>5]
#com_m = pd.merge(count,I,on='author',how='inner')
com_m.info()

筛选完只剩下208个up主的视频数在5个以上:

last = sc.groupby('author')['date'].max()
late = sc.groupby('author')['date'].min()
# 最晚发布日期与最早之间的天数/发布次数,保留整数,用date重新命名列
F =round((last-late).dt.days/sc.groupby('author')['date'].count()).reset_index()
F.columns =['author', 'F']
F = pd.merge(com_m, F,on='author', how='inner')
F.describe()

通过describe()方法发现,最晚发布日期与最早发布日期为0的现象,猜测是在同一天内发布了大量的视频。

# 查找的一天内发布视频数大于5的人
F.loc[F['F'].idxmin()]

其视频皆为转载,将其剔除统计范围内。

F = F.loc[F['F']>0]
F.describe()

I值

# 构建I值
danmu = sc.groupby('author')['danmu'].sum()
replay = sc.groupby('author')['replay'].sum()
view = sc.groupby('author')['view'].sum()
count = sc.groupby('author')['date'].count()
I =round((danmu+replay)/view/count*100,2).reset_index() #
I.columns=['author','I']
F_I = pd.merge(F,I,on='author',how='inner')
F_I.head()

L值

# 计算出点赞率计算出所有视频的点赞率
sc['L'] =(sc['likes']+sc['coins']*2+sc['favorite']*3)/sc['view']*100
sc.head()

# 构建L值
L =(sc.groupby('author')['L'].sum()/sc.groupby('author')['date'].count()).reset_index()
L.columns =['author', 'L']
IFL = pd.merge(F_I, L, on='author',how='inner')
IFL = IFL[['author', 'I','F','L']]
IFL.head()

  维度打分

维度确认的核心是分值确定,按照设定的标准,我们给每个消费者的I/F/L值打分,分值的大小取决于我们的偏好,即我们越喜欢的行为,打的分数就越高:

  • I值,I代表了up主视频的平均评论率,这个值越大,就说明其视频越能使用户有话题,当I值越大时,分值越大。

  • F值表示视频的平均发布周期,我们当然想要经常看到,所以这个值越大时,分值越小。

  • L值表示发布视频的平均点赞率,S值越大时,质量越稳定,分值也就越大。I/S值根据四分位数打分,F值根据更新周期打分。

IFL.describe()

I值打分:

L值打分:

F值根据发布周期打分:

  分值计算

# bins参数代表我们按照什么区间进行分组
# labels和bins切分的数组前后呼应,给每个分组打标签
# right表示了右侧区间是开还是闭,即包不包括右边的数值,如果设置成False,就代表[0,30)
IFL['I_SCORE'] = pd.cut(IFL['I'], bins=[0,0.03,0.06,0.11,1000],
                        labels=[1,2,3,4], right=False).astype(float)
IFL['F_SCORE'] = pd.cut(IFL['F'], bins=[0,7,15,30,90,1000],
                        labels=[5,4,3,2,1], right=False).astype(float)
IFL['L_SCORE'] = pd.cut(IFL['L'], bins=[0,5.39,9.07,15.58,1000],
                        labels=[1,2,3,4], right=False).astype(float)
IFL.head()

判断用户的分值是否大于平均值:

# 1为大于均值 0为小于均值
IFL['I是否大于平均值'] =(IFL['I_SCORE'] > IFL['I_SCORE'].mean()) *1
IFL['F是否大于平均值'] =(IFL['F_SCORE'] > IFL['F_SCORE'].mean()) *1
IFL['L是否大于平均值'] =(IFL['L_SCORE'] > IFL['L_SCORE'].mean()) *1
IFL.head()

  客户分层

RFM经典的分层会按照R/F/M每一项指标是否高于平均值,把用户划分为8类,我们根据根据案例中的情况进行划分,具体像下面表格这样:

引入人群数值的辅助列,把之前判断的I\F\S是否大于均值的三个值串联起来:

IFL['人群数值'] =(IFL['I是否大于平均值'] *100) +(IFL['F是否大于平均值'] *10) +(IFL['L是否大于平均值'] *1)
IFL.head()

构建判断函数,通过判断人群数值的值,来返回对应标签:

将标签分类函数应用到人群数值列:

IFL['人群类型'] = IFL['人群数值'].apply(transform_label) 

IFL.head()

  各类用户占比

cat = IFL['人群类型'].value_counts().reset_index()
cat['人数占比'] = cat['人群类型'] / cat['人群类型'].sum()
cat

各分区up主排行top15

  科学科普分区

high = IFL.loc[IFL['人群类型']=='高价值up主']
rank = high[['author','L','I','F']].sort_values('L',ascending=False)
rank.to_excel('rank.xlsx', sheet_name='科学科普',encoding='utf-8')

  社科人文分区

  机械分区

机械分区高价值up主只有5位,因为机械分区在科技区是个小分区,发布视频的up主仅有54位。

  野生技术协会分区

  星海

  汽车

参考文章:

1.数据不吹牛:《不到70行Python代码,轻松玩转RFM用户分析模型》

2.Crossin:《B站用户行为分析非官方报告》

3.https://github.com/Vespa314/bilibili-api/blob/master/api.md


End


    100道练习题,玩转Numpy模块!    面试真题:1亿张彩票堆起来有多高?    数据分析里常用的五个统计学概念
小z微信坑位限时开放后台回复“芝麻开门”即可捕捉号主本人

“优秀~”

  • 7
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
好的,以下是在jupyter notebook上使用RFM模型分析客户价值的完整流程,并绘制相应的图像。 1. 数据准备 首先,我们需要准备一份客户交易数据。在本次演示中,我们使用一个示例数据集,包了客户ID、交易日期、交易金额等信息。您可以在以下链接下载示例数据集:https://cdn.jsdelivr.net/gh/datagy/mediumdata/rfm_data.csv。 2. 数据预处理 接下来,我们需要对数据进行预处理,包括删除重复数据、处理缺失值等。代码如下: ```python # 导入所需库 import pandas as pd # 读取数据 data = pd.read_csv('rfm_data.csv') # 删除重复数据 data.drop_duplicates(inplace=True) # 处理缺失值 data.dropna(inplace=True) ``` 3. 计算RFM指标 计算RFM指标是RFM模型的核心步骤,我们需要根据客户的交易行为,计算每个客户的R、F、M指标。代码如下: ```python # 计算R指标 import datetime as dt last_date = data['InvoiceDate'].max() + dt.timedelta(days=1) data['Diff'] = last_date - data['InvoiceDate'] data['R'] = data['Diff'].apply(lambda x: x.days) # 计算F指标 data['F'] = data.groupby(['CustomerID'])['InvoiceNo'].transform('nunique') # 计算M指标 data['M'] = data.groupby(['CustomerID'])['TotalPrice'].transform('sum') # 删除不需要的列 data.drop(['InvoiceNo', 'StockCode', 'Description', 'Quantity', 'InvoiceDate', 'UnitPrice', 'Diff', 'TotalPrice'], axis=1, inplace=True) ``` 4. RFM分值计算 根据客户在R、F、M指标上的表现,我们可以为每个指标分配不同的分值,从而计算客户的RFM分值。代码如下: ```python # 定义分值范围和分值 r_labels = range(4, 0, -1) r_groups = pd.qcut(data['R'], q=4, labels=r_labels) f_labels = range(1, 5) f_groups = pd.qcut(data['F'], q=4, labels=f_labels) m_labels = range(1, 5) m_groups = pd.qcut(data['M'], q=4, labels=m_labels) # 将分值合并到一起 data['R_Score'] = r_groups.astype('int') data['F_Score'] = f_groups.astype('int') data['M_Score'] = m_groups.astype('int') # 计算RFM总分值 data['RFM_Score'] = data['R_Score'] * 100 + data['F_Score'] * 10 + data['M_Score'] ``` 5. RFM分群 根据RFM模型的原理,我们将客户根据RFM总分值进行分群,通常将客户分为3-5个等级。代码如下: ```python # 定义分群函数 def rfm_group(score): if score >= 311 and score <= 444: return '重要价值客户' elif score >= 211 and score <= 310: return '重要保持客户' elif score >= 111 and score <= 210: return '重要挽留客户' elif score >= 11 and score <= 110: return '低价值客户' else: return '流失客户' # 计算客户RFM分群 data['RFM_Group'] = data['RFM_Score'].apply(rfm_group) ``` 6. 绘制RFM散点图 最后,我们可以通过绘制RFM散点图,更直观地展示客户在R、F、M三个指标上的表现,并且可以根据不同的RFM分群,对客户进行可视化分析。代码如下: ```python # 导入所需库 import matplotlib.pyplot as plt import seaborn as sns # 绘制RFM散点图 sns.set_style('white') plt.figure(figsize=(12,10)) plt.scatter(data['R'], data['F'], c=data['M_Score'], cmap='viridis') plt.xlabel('Recency (days)') plt.ylabel('Frequency (times)') plt.title('RFM Analysis') plt.show() # 绘制RFM分群柱状图 plt.figure(figsize=(10,6)) data['RFM_Group'].value_counts().plot(kind='bar') plt.xlabel('RFM Group') plt.ylabel('Count') plt.title('RFM Group Analysis') plt.show() ``` 以上就是在jupyter notebook上使用RFM模型分析客户价值,并绘制相应图像的完整流程。希望可以对您有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值