Description
某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(
我们来简化一下这个游戏的规则
有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a个comb就有a*a分,comb就是极大的连续o。
比如ooxxxxooooxxx,分数就是2*2+4*4=4+16=20。
Sevenkplus闲的慌就看他打了一盘,有些地方跟运气无关要么是o要么是x,有些地方o或者x各有50%的可能性,用?号来表示。
比如oo?xx就是一个可能的输入。
那么WJMZBMR这场osu的期望得分是多少呢?
比如oo?xx的话,?是o的话就是oooxx => 9,是x的话就是ooxxx => 4
期望自然就是(4+9)/2 =6.5了
Input
第一行一个整数n,表示点击的个数
接下来一个字符串,每个字符都是ox?中的一个
Output
一行一个浮点数表示答案
四舍五入到小数点后4位
如果害怕精度跪建议用long double或者extended
Sample Input
????
Sample Output
n<=300000
osu很好玩的哦
WJMZBMR技术还行(雾),x基本上很少呢
HINT
Source
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~期望DP~
l[i]表示第i位时期望的连续长度,f[i]表示期望的分数。
按照位DP,分三种情况:
(1)s[i]=='o',l[i]=l[i-1],f[i]=f[i-1]+l[i]*2-1;
(2)s[i]=='x',l[i]=0,f[i]=f[i-1];
(3)s[i]=='?',li]=(l[i-1]+1)/2,f[i]要分情况讨论,如果这一位之前的一位是'x',那么这一位l[i]=0,?变成x,则分数是0,变成o,则分数是1,均分下来f[i]=0.5。如果这一位之前是其他的数,?变成x,则分数是f[i-1],变成o,则分数是f[i-1]+2*l[i-1]+1,均分下来f[i]=f[i-1]+l[i-1]+0.5。
按照这个递推就可以了~
#include<cstdio>
#include<cstring>
int n;
double f[300001],l[300001];
char s[300001];
int main()
{
scanf("%d%s",&n,s+1);
for(int i=1;i<=n;i++)
switch(s[i])
{
case('o'):l[i]=l[i-1]+1;f[i]=f[i-1]+(l[i]*2-1);break;
case('x'):l[i]=0;f[i]=f[i-1];break;
case('?'):l[i]=(l[i-1]+1)/2;f[i]=f[i-1]+l[i-1]+0.5;break;
}
printf("%.4lf\n",f[n]);
return 0;
}