Python数据分析 3.numpy数据科学库

本文介绍了Python数据分析中numpy库的基本用法,包括数组创建、计算、读取数据、索引切片、拼接处理、统计方法等。讲解了广播机制、数组轴的运算,以及如何处理和分析数据中的nan值。还提供了多个实际操作的练习,如绘制直方图和探究数据关系。
摘要由CSDN通过智能技术生成

Python数据分析 3.numpy基础库

1.数组的创建

import numpy as np

t1 = np.array([1,2,3,])
print(t1)
print(type(t1))

t2 = np.array(range(3))
print(t2)

t3 = np.arange(4,10,2)
print(t3)

print(t3.dtype)
[1 2 3]
<class 'numpy.ndarray'>
[0 1 2]
[4 6 8]
int32

numpy中常见的数据类型:
在这里插入图片描述

#numpy中的数据类型
t4 = np.array(range(1,4),dtype="i1")
print(t4)
print(t4.dtype)

#numpy中的bool类型
t5 = np.array([1,1,0,1,0,0],dtype=bool)
print(t5)
print(t5.dtype)

#调整数据类型
t6 = t5.astype("int8")
print(t6)
print(t6.dtype)

#numpy中的小数
t7 = np.array([random.random() for i in range(3)])
print(t7)
print(t7.dtype)

#numpy小数点后几位
t8 = np.round(t7,2)
print(t8)

print("%.2f"%random.random())
[1 2 3]
int8
[True True False True False False]
bool
[1 1 0 1 0 0]
int8
[0.50897424 0.78931079 0.69345471]
float64
[0.51 0.79 0.69]
0.78

数组的形状:

import numpy as np

t1 = np.arange(12)
print(t1)
print(t1.shape)

t2 = np.array([[1,2,3],[4,5,6]])
print(t2)
print(t2.shape)

# 三维数组
t3 = np.array([[[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值