Python数据分析 4.pandas数据科学库

本文详细介绍了Python数据分析库pandas的核心概念,包括数据类型Series、DataFrame的创建和读取、排序与索引操作,特别是DataFrame的布尔索引。此外,还讨论了如何处理缺失数据、应用统计方法,以及数据的合并与分组聚合,提供了实用的数据分析技巧。
摘要由CSDN通过智能技术生成

Python数据分析 4.pandas数据科学库

1.数据类型series

实质是带标签的一维数组,有键和值

import pandas as pd

t1 = pd.Series([1,2,3,4,5],index=list("abcde"))

temp_dict = {
   "name":"Lucy","age":20,"tel":10086}
t2 = pd.Series(temp_dict)

print(t1[[1]])
print(t2[["name","age"]])
print(t1>2)

list(t1.index)[:2]
type(t1.values)  #numpy.ndarray
b    2
dtype: int64

name    Lucy
age       20
dtype: object

a    False
b    False
c     True
d     True
e     True
dtype: bool

2.pandas读取外部数据

import pandas as pd

# pandas读取csv中的文件
df = pd.read_csv("D:/数据分析资料/day04/code/dogNames2.csv")

3.DataFrame的创建

DataFrame对象既有行索引,又有列索引
行索引,表明不同行,横向索引,叫index,0轴,axis=0
列索引,表名不同列,纵向索引,叫columns,1轴,axis=1

import pandas as pd
import numpy as np

df = pd.DataFrame(np.arange(12).reshape(3,4),index=list("abc"),columns=list("WXYZ"))

print(df)
   W  X   Y   Z
a  0  1   2   3
b  4  5   6   7
c  8  9  10  11

(DataFrame可以看作一个Series容器)

import pandas as pd
import numpy as np

d1 = {
   "name":["Lucy","Lily","Cindy"],"age":[20,42,37],"tel":["110","120","119"]}
df1 = pd.DataFrame(d1)

d2 = [{
   "name":"Lucy","age":20,"tel":110},{
   "name":"Lily","age":42,"tel":120},{
   "name":"Cindy","age":37}]
df2 = pd.DataFrame(d2)

print(df1)
print(df2)
    name  age  tel
0   Lucy   20  110
1   Lily   42  120
2  Cindy   37  119

    name  age    tel
0   Lucy   20  110.0
1   Lily   42  120.0
2  Cindy   37    NaN
df.index #行索引
df.columns #列索引
df.values #对象值
df.shape #形状
df.dtypes #数据类型
df.ndim #数据维度

df.head()
df.tail()
df.info()
df.describe()

4.DataFrame的排序和索引

排序:
import pandas as pd

# pandas读取csv中的文件
df = pd.read_csv("D:/daily/大二下/量化/拜师/数据分析资料/day04/code/dogNames2.csv")
# print(df.info())
# print(df.head())

# dataframe中排序
df = df.sort_values(by="Count_AnimalName",ascending
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值