神经网络中的激活函数——ReLU函数

一. ReLU函数介绍

1. 函数表达式

            在x大于0时输出x,否则输出0。

            公式为:𝑓(𝑥)=max⁡(0,𝑥)

2. 函数图像

二. ReLU函数使用

ReLU(修正线性单元)是一种常用的激活函数,在深度学习中广泛应用。它具有以下几个优点,适用于不同的场景:

  1. 非饱和性(Non-saturation):ReLU在正区间(x>0)上是线性的,没有梯度消失问题,因此在反向传播过程中能够更有效地传播梯度,使得网络的训练更加稳定和快速。

  2. 稀疏激活性(Sparsity of Activation):由于ReLU在负值部分输出为0,因此它引入了稀疏性,使得神经网络中的许多神经元变得不活跃。这有助于减少过拟合并提高模型的泛化能力。

  3. 计算简单:ReLU的计算简单且高效,只需比较输入是否大于零即可,不涉及复杂的数学运算,因此在实际应用中的计算开销较小。

  4. 解决梯度消失问题:在深层网络中,使用Sigmoid或Tanh等饱和激活函数容易导致梯度消失问题,而ReLU可以在一定程度上缓解这个问

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值