原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2118
墨墨的等式
Description
墨墨突然对等式很感兴趣,他正在研究 a1x1+a2x2+…+anxn=B a 1 x 1 + a 2 x 2 + … + a n x n = B 存在非负整数解的条件,他要求你编写一个程序,给定N、{an}、以及B的取值范围,求出有多少B可以使等式存在非负整数解。
Input
输入的第一行包含3个正整数,分别表示N、BMin、BMax分别表示数列的长度、B的下界、B的上界。输入的第二行包含N个整数,即数列{an}的值。
Output
输出一个整数,表示有多少b可以使等式存在非负整数解。
Sample Input
2 5 10
3 5
Sample Output
5
HINT
对于100%的数据,N≤12,0≤ai≤5 * 10^5,1≤BMin≤BMax≤10^12。
题解
完全背包拿暴力分相信大家都会,就不讲了。
首先,如果我们已经凑出 xiai+xjaj...=p x i a i + x j a j . . . = p ,那么我们一定能凑出 (xi+1)ai+xjaj...=p+ai ( x i + 1 ) a i + x j a j . . . = p + a i ,所以对于某个元素 ai a i ,设 x∈[0,ai),p′ mod ai=x x ∈ [ 0 , a i ) , p ′ m o d a i = x ,当我们找到满足条件的的最小的p’时,我们一定可以凑出 ai+x,2ai+x,3ai+x... a i + x , 2 a i + x , 3 a i + x . . . ,进而我们就可以计算出在 [1,R] [ 1 , R ] 中满足对 ai a i 取模得到 x x 的数的个数。
为了减少复杂度,我们不妨把取为a中最小的元素 amin a m i n 。接下来我们就可以建图,节点 0∼amin 0 ∼ a m i n 表示对 amin a m i n 取模的余数,dis[i]表示满足 p′ mod amin=i p ′ m o d a m i n = i 的p’的最小值。建边时,对于每个节点j,我们枚举所有 ai a i ,连一条 j→(j+ai) mod amin j → ( j + a i ) m o d a m i n 的有向边即可。
这道题博主在洛谷上Dijkstra莫名被卡,SPFA加register才A掉,然而BZOJ上Dijkstra还比SPFA快1000ms。。。
记得左区间减一。
代码
Dijkstra:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int M=5e5+5;
struct sd{
ll n,d;
bool operator <(const sd &b)const
{return b.d<d;}
};
ll n,b1,b2,dis[M],a[M],minn=1e17;
vector<sd>edge[M];
bool vis[M];
priority_queue<sd>dui;
void in()
{
scanf("%lld%lld%lld",&n,&b1,&b2);
for(int i=1;i<=n;++i)
scanf("%lld",&a[i]),minn=min(a[i],minn);
}
void dijkstra()
{
for(int i=1;i<minn;++i)dis[i]=1e17;
dis[0]=0;
dui.push((sd){0,0});
sd f,t;
while(!dui.empty())
{
f=dui.top();
dui.pop();
if(vis[f.n])continue;
vis[f.n]=1;
for(int i=edge[f.n].size()-1;i>=0;--i)
{
t=edge[f.n][i];
if(!vis[t.n]&&dis[t.n]>dis[f.n]+t.d)
{
dis[t.n]=dis[f.n]+t.d;
dui.push((sd){t.n,dis[t.n]});
}
}
}
}
void ac()
{
for(int i=0;i<minn;++i)
for(int j=1;j<=n;++j)
if(a[j]%minn!=0)
edge[i].push_back((sd){(i+a[j])%minn,a[j]});
dijkstra();
ll ans=0;
b1--;
for(int i=0;i<minn;++i)
{
if(dis[i]<=b1)ans-=(b1-dis[i])/minn+1;
if(dis[i]<=b2)ans+=(b2-dis[i])/minn+1;
}
printf("%lld",ans);
}
int main()
{
in();ac();
return 0;
}
SPFA:
#include<bits/stdc++.h>
#define ll long long
#define R register
using namespace std;
const int M=5e5+5;
struct sd{
ll n,d;
};
ll n,b1,b2,dis[M],a[M],minn=1e17;
vector<sd>edge[M];
bool vis[M];
queue<int>dui;
void in()
{
scanf("%lld%lld%lld",&n,&b1,&b2);
for(int i=1;i<=n;++i)
scanf("%lld",&a[i]),minn=min(a[i],minn);
}
void SPFA()
{
memset(dis,53,sizeof(dis));
dis[0]=0;
dui.push(0);
int f;
sd t;
R int i;
while(!dui.empty())
{
f=dui.front();
dui.pop();
vis[f]=0;
for(i=edge[f].size()-1;i>=0;--i)
{
sd t=edge[f][i];
if(dis[t.n]>dis[f]+t.d)
{
dis[t.n]=dis[f]+t.d;
dui.push(t.n);
}
}
}
}
void ac()
{
R int i,j;
for(i=0;i<minn;++i)
for(j=1;j<=n;++j)
if(a[j]%minn!=0)
edge[i].push_back((sd){(i+a[j])%minn,a[j]});
SPFA();
ll ans=0;
b1--;
for(i=0;i<minn;++i)
{
if(dis[i]<=b1)ans-=(b1-dis[i])/minn+1;
if(dis[i]<=b2)ans+=(b2-dis[i])/minn+1;
}
printf("%lld",ans);
}
int main()
{
in();ac();
return 0;
}