BZOJ3566[SHOI2014] 概率充电器

原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3566

概率充电器

Description

著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!”
SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?

Input

第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。

Output

输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数

Sample Input

3
1 2 50
1 3 50
50 0 0

Sample Output

1.000000

HINT

对于 100%的数据,n≤500000,0≤p,qi≤100。

题解

我们先将无根树变为有根树,这样,我们判断每个节点能否充电时,只需要判断父节点能否给它充电,子节点能否给它充电。

然而,子节点和父节点有可能同时给它充电,这样,父节点给它充电的概率和子节点给它充电的概率没有办法简单计算出它能否充电的概率。

所以我们不如计算父节点不给它充电的概率和子节点不给它充电的概率,这两个概率相乘即是它不被充电的概率,刚好是它被充电的概率的补集。

设节点不给父亲充电的概率为 f[i] f [ i ] ,不给儿子充电的概率为 g[i] g [ i ]

先计算子节点不给它充电的概率,这个概率分为两部分:子节点本身没有充电,子节点充了电但是它和父节点之间的通路不可用,设改点编号为 v v ,子节点为to edge[v][i].p e d g e [ v ] [ i ] . p 表示 v v to之间通路的开放概率,于是可得状态转移如下:    

f[v]×=f[to]+(1f[to])×(1edge[v][i].p) f [ v ] × = f [ t o ] + ( 1 − f [ t o ] ) × ( 1 − e d g e [ v ] [ i ] . p )
 
这样我们就可以由下往上递推。

在计算父节点不给子节点充电的概率,同样分为两部分:父节点本身不充电,父节点充电了但是父节点与子节点通路不开放。父节点本身不充电的概率为父节点的父节点不给它充电的概率乘以其他子节点不给它充电的概率,其他子节点不给它充电的概率又等于所有节点不给它充电的概率除以需要计算的子节点不给父节点充电的概率,所以得状态转移方程如下:  

p=f[v]f[to]+(1f[to])×(1edge[v][i].p)×g[v] p = f [ v ] f [ t o ] + ( 1 − f [ t o ] ) × ( 1 − e d g e [ v ] [ i ] . p ) × g [ v ]
 
剩下的部分就和 f[i] f [ i ] 类似了:
g[to]=p+(1p)×(1edge[v][i].p) g [ t o ] = p + ( 1 − p ) × ( 1 − e d g e [ v ] [ i ] . p )
 
这样我们就可以从上往下递推。

最后统计就很简单了。

代码
#include<bits/stdc++.h>
#define db double
#define to edge[v][i].t
using namespace std;
const int M=5e5+5;
struct ed{int t;db p;};
int n;
vector<ed>edge[M];
db f[M],g[M];
void in()
{
    scanf("%d",&n);
    int a,b,c;
    for(int i=1;i<n;++i)
    {
        scanf("%d%d%d",&a,&b,&c);
        edge[a].push_back((ed){b,(db)c/100});
        edge[b].push_back((ed){a,(db)c/100});
    }
    for(int i=1;i<=n;++i)
    scanf("%d",&a),f[i]=1-(db)a/100;
}
void dfs1(int v,int fa)
{
    for(int i=edge[v].size()-1;i>=0;--i)
    if(to!=fa)dfs1(to,v);
    for(int i=edge[v].size()-1;i>=0;--i)
    if(to!=fa)f[v]*=f[to]+(1-f[to])*(1-edge[v][i].p);
}
void dfs2(int v,int fa)
{
    db p;
    for(int i=edge[v].size()-1;i>=0;--i)
    if(to!=fa)
    {
        p=f[v]/(f[to]+(1-f[to])*(1-edge[v][i].p))*g[v];
        g[to]=p+(1-p)*(1-edge[v][i].p);
        dfs2(to,v);
    }
}
void ac()
{
    dfs1(1,0);
    g[1]=1;
    dfs2(1,0);
    db ans=0;
    for(int i=1;i<=n;++i)
    ans+=1-f[i]*g[i];
    printf("%.6lf",ans);
}
int main()
{
    in();ac();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShadyPi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值