[线筛五连]线筛素数

模板链接:https://www.luogu.org/problemnew/show/P3383

【模板】线性筛素数

题目描述

如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内)

输入输出格式
输入格式:

第一行包含两个正整数N、M,分别表示查询的范围和查询的个数。

接下来M行每行包含一个不小于1且不大于N的整数,即询问该数是否为质数。

输出格式:

输出包含M行,每行为Yes或No,即依次为每一个询问的结果。

输入输出样例
输入样例#1:

100 5
2
3
4
91
97

输出样例#1:

Yes
Yes
No
No
Yes

说明

时空限制:500ms 128M

数据规模:

对于30%的数据:N<=10000,M<=10000

对于100%的数据:N<=10000000,M<=100000

样例说明:

N=100,说明接下来的询问数均不大于100且不小于1。

所以2、3、97为质数,4、91非质数。

故依次输出Yes、Yes、No、No、Yes。

题解

线筛素数,是所有线性筛的基础,非常重要。

check[i] c h e c k [ i ] 表示 i i 是否为素数,p[i]直接记录素数。

对于每个数,枚举所有质因数乘上去,显然,这样遍历到的数都不是素数, check[i]=1 c h e c k [ i ] = 1

但这样也会浪费许多时间,因为对于同一个数,它会被自己的所有质数因子遍历一次,所以我们让每个数只被自己最小的质因子筛去(即当 i mod p[j]=0 i   m o d   p [ j ] = 0 break b r e a k )。这样,每个数只会被遍历一次,总复杂度 O(n) O ( n )

代码
#include<bits/stdc++.h>
#define R register int
#define ll long long
using namespace std;
const int M=1e7+5,N=1e7;
int p[M],n,m;
bool check[M];
void get()
{
    R i,j,t;
    check[1]=1;
    for(i=2;i<=n;++i)
    {
        if(!check[i])p[++p[0]]=i;
        for(j=1;j<=p[0];++j)
        {
            t=i*p[j];if(t>n)break;
            check[t]=1;
            if(i%p[j]==0)break;
        }
    }
}
void in(){scanf("%d%d",&n,&m);get();}
void ac()
{
    R i,a;
    for(i=1;i<=m;++i)
    {
        scanf("%d",&a);
        if(check[a])puts("No");
        else puts("Yes");
    }
}
int main()
{
    in();ac();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShadyPi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值