模板链接:https://www.luogu.org/problemnew/show/P3383
【模板】线性筛素数
题目描述
如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内)
输入输出格式
输入格式:
第一行包含两个正整数N、M,分别表示查询的范围和查询的个数。
接下来M行每行包含一个不小于1且不大于N的整数,即询问该数是否为质数。
输出格式:
输出包含M行,每行为Yes或No,即依次为每一个询问的结果。
输入输出样例
输入样例#1:
100 5
2
3
4
91
97
输出样例#1:
Yes
Yes
No
No
Yes
说明
时空限制:500ms 128M
数据规模:
对于30%的数据:N<=10000,M<=10000
对于100%的数据:N<=10000000,M<=100000
样例说明:
N=100,说明接下来的询问数均不大于100且不小于1。
所以2、3、97为质数,4、91非质数。
故依次输出Yes、Yes、No、No、Yes。
题解
线筛素数,是所有线性筛的基础,非常水重要。
check[i] c h e c k [ i ] 表示 i i 是否为素数,直接记录素数。
对于每个数,枚举所有质因数乘上去,显然,这样遍历到的数都不是素数, check[i]=1 c h e c k [ i ] = 1 。
但这样也会浪费许多时间,因为对于同一个数,它会被自己的所有质数因子遍历一次,所以我们让每个数只被自己最小的质因子筛去(即当 i mod p[j]=0 i m o d p [ j ] = 0 时 break b r e a k )。这样,每个数只会被遍历一次,总复杂度 O(n) O ( n ) 。
代码
#include<bits/stdc++.h>
#define R register int
#define ll long long
using namespace std;
const int M=1e7+5,N=1e7;
int p[M],n,m;
bool check[M];
void get()
{
R i,j,t;
check[1]=1;
for(i=2;i<=n;++i)
{
if(!check[i])p[++p[0]]=i;
for(j=1;j<=p[0];++j)
{
t=i*p[j];if(t>n)break;
check[t]=1;
if(i%p[j]==0)break;
}
}
}
void in(){scanf("%d%d",&n,&m);get();}
void ac()
{
R i,a;
for(i=1;i<=m;++i)
{
scanf("%d",&a);
if(check[a])puts("No");
else puts("Yes");
}
}
int main()
{
in();ac();
return 0;
}