电路基础-二阶(second -order) 电路

前一章中,我们讨论了带有单个储能元件( 一个电容器或一个电感器)的电路,因为它
们是用一阶微分方程描述的,所以称为一阶电路。在这一章中,我们将考虑包含两个储能
元件的电路,称为二阶(second -order) 电路,因为它们的响应是由包含二阶导数的微分方
程描述的。

在这里插入图片描述

二阶微分方程

在这里插入图片描述

在这里插入图片描述

计算初值和终值

在这里插入图片描述

无源串联RLC 电路

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

无源并联RLC 电路

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

串联RLC 电路的阶跃响应

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

并联RLC 电路的阶跃响应

在这里插入图片描述

双2阶广义积分器锁频环(DS0GI-FLL)与其他常规锁相环相比,具有较好的电网适应性,在电网谐波含 量较髙及电网故障跌落的情况下可实现对电网电压基波频率和相角快速准确的捕获。构建了基于DS0-GI-FUL 的并网变流器电网同步控制系统,仿真和实验结果表明,在电网背景谐波和故障跌落的情况下,该电网同步系 统可更好地滤除电网电压低次谐波的干扰,更快、更稳定地实现相角和频率的同步,从而验证了该系统的有效 性和可行性。 双2阶广义积分器锁频环(DS0GI-FLL)与其他常规锁相环相比,具有较好的电网适应性,在电网谐波含 量较髙及电网故障跌落的情况下可实现对电网电压基波频率和相角快速准确的捕获。构建了基于DS0-GI-FUL 的并网变流器电网同步控制系统,仿真和实验结果表明,在电网背景谐波和故障跌落的情况下,该电网同步系 统可更好地滤除电网电压低次谐波的干扰,更快、更稳定地实现相角和频率的同步,从而验证了该系统的有效 性和可行性。 双2阶广义积分器锁频环(DS0GI-FLL)与其他常规锁相环相比,具有较好的电网适应性,在电网谐波含 量较髙及电网故障跌落的情况下可实现对电网电压基波频率和相角快速准确的捕获。构建了基于DS0-GI-FUL 的并网变流器电网同步控制系统,仿真和实验结果表明,在电网背景谐波和故障跌落的情况下,该电网同步系 统可更好地滤除电网电压低次谐波的干扰,更快、更稳定地实现相角和频率的同步,从而验证了该系统的有效 性和可行性。
### 一阶电路的阶跃响应 在一阶电路中,假设输入信号是一个单位阶跃函数 \( \varepsilon(t) \),其电压或电流的变化可以用指数形式表示。对于典型的 RC 或 RL 电路,时间常数决定了系统的动态行为。 #### 阶跃响应公式 对于一个简单的 RC 串联电路,在施加单位阶跃电压的情况下,电容器两端的电压随时间变化的关系为: \[ V_c(t) = V_s(1 - e^{-t/RC}) \quad t \geq 0 \] 其中: - \( V_s \) 是输入阶跃电压, - \( R \) 和 \( C \) 分别代表电阻和电容值, - 时间常数 \( \tau = RC \)[^1]。 该公式的推导基于基尔霍夫定律以及微分方程的求解方法[^2]。 --- ### 二阶电路的阶跃响应 在二阶电路中,通常涉及两个储能元件(如电感和电容),因此其动力学行为更加复杂。常见的二阶电路有并联 RLC 电路和平联 RLC 电路。这些电路的阶跃响应取决于阻尼系数 \( \alpha \) 和固有频率 \( \omega_0 \) 的关系。 #### 自然频率与阻尼比 设 \( \alpha = \frac{R}{2L} \) 表示衰减因子,\( \omega_0 = \frac{1}{\sqrt{LC}} \) 表示无阻尼振荡角频率,则特征根由下式决定: \[ s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} \] 根据 \( s_{1,2} \) 的性质,可以分为三种情况: 1. **过阻尼 (\( \alpha > \omega_0 \))**: 响应是非震荡性的双指数曲线; 2. **临界阻尼 (\( \alpha = \omega_0 \))**: 响应最快达到稳定状态而不发生超调; 3. **欠阻尼 (\( \alpha < \omega_0 \))**: 存在振荡现象,最终趋于稳态[^3]。 #### 并联 RLC 电路的阶跃响应 考虑一个并联 RLC 电路受到单位阶跃激励的情况,总电流 \( I(t) \) 可写成如下形式: \[ I(t) = A_1e^{s_1t} + A_2e^{s_2t}, \quad t \geq 0 \] 如果处于欠阻尼状态,则表达式变为: \[ I(t) = Be^{-\alpha t}\cos(\omega_d t + \phi), \quad \text{where } \omega_d = \sqrt{\omega_0^2 - \alpha^2}. \] 这里引入了阻尼角频率 \( \omega_d \)[^3]。 --- ### 两者的主要区别 | 特性 | 一阶电路 | 二阶电路 | |-------------------|----------------------------------|--------------------------------| | 数学模型 | 单变量线性微分方程 | 多变量耦合微分方程 | | 衰减特性 | 指数单调衰减 | 取决于阻尼程度 | | 是否存在振荡 | 否 | 若欠阻尼则可能 | | 参数依赖 | 主要受单个时间常数影响 | 受多个参数共同作用 | 通过上述比较可知,尽管二者均能描述系统对外部激励的反应规律,但因结构差异使得它们的行为模式截然不同[^4]。 ```python import numpy as np import matplotlib.pyplot as plt # 定义一阶电路阶跃响应 def first_order_response(R=1, C=1, Vs=1, time=np.linspace(0, 5, 100)): tau = R * C return Vs * (1 - np.exp(-time / tau)) # 定义二阶电路阶跃响应(欠阻尼) def second_order_response(L=1, C=1, R=0.5, time=np.linspace(0, 10, 100)): alpha = R / (2 * L) omega_0 = 1 / np.sqrt(L * C) omega_d = np.sqrt(omega_0**2 - alpha**2) B = 1 / (np.sqrt((alpha)**2 + omega_d**2)) phi = np.arctan(-omega_d / alpha) return B * np.exp(-alpha * time) * np.cos(omega_d * time + phi) # 绘制图形 plt.figure(figsize=(8, 6)) plt.plot(np.linspace(0, 5, 100), first_order_response(), label="First Order Response", color='blue') plt.plot(np.linspace(0, 10, 100), second_order_response(), label="Second Order Response", linestyle="--", color='red') plt.title("Step Responses of First and Second Order Circuits") plt.xlabel("Time (seconds)") plt.ylabel("Voltage or Current") plt.legend() plt.grid(True) plt.show() ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值