在移动端优化图像的处理速度,用OpenCL或许可以达到优化的效果。
Khronos OpenCL-Headers- https://github.com/KhronosGroup/OpenCL-Headers/
This is a sobel filter on Android using OpenCL- https://github.com/WhiteIsClosing/Android-OpenCL-Sobel-Filter
通过Sobel滤波这样的程序来完成基于OpenCL实现的Android平台并行化。利用OpenCL在智能手机(安卓系统)实现并行化,达到缩短处理时间、降低功耗的目的。OpenCL支持API 21以上的某些Android设备。
-- OpenCL
OpenCL(全称Open Computing Language,开放运算语言)是第一个面向异构系统通用目的并行编程的开放式、免费标准,也是一个统一的编程环境,便于软件开发人员为高性能计算服务器、桌面计算系统、手持设备编写高效轻便的代码,而且广泛适用于多核心处理器(CPU)、图形处理器(GPU)、Cell类型架构以及数字信号处理器(DSP)等其他并行处理器,在游戏、娱乐、科研、医疗等各种领域都有广阔的发展前景。
OpenCL由一门用于编写kernels (在OpenCL设备上运行的函数)的语言(基于C99)和一组用于定义并控制平台的API组成。OpenCL提供了基于任务分割和数据分割的并行计算机制。
OpenCL类似于另外两个开放的工业标准OpenGL和OpenAL,这两个标准分别用于三维图形和计算机音频方面。OpenCL扩展了GPU用于图形生成之外的能力。
-- GPU
利用GPU对图像渲染进行加速的技术非常成熟,因为GPU是典型的单指令多数据(SIMD)的体系结构,擅长大规模的并行计算;而CPU是多指令单数据流(MISD)的体系结构,更擅长逻辑控制。CPU只负责逻辑控制,GPU更多负责计算,这种一个CPU(控制单元)+几个GPU(有时可能再加几个CPU)(计算单元)的架构就是所谓的异构编程。