拜读了论文Target-driven Visual Navigation in Indoor Scenesusing Deep Reinforcement Learning之后,
来实现GitHub上的代码:icra2017-visual-navigation。
1.先配置好TensorFlow,可以去官网https://www.tensorflow.org/install/下载,也可参照博客去完成安装。
2.在GitHub下载源码,并解压,然后进入data路径中,来
pip install -r requirements.txt,如果出现错误,请加入sudo pip install -r requirements.txt。
3.运行代码前需要来完成场景的搭建,下载
./data/download_scene_dumps.sh
4.执行后步骤3,运行,
python keyboard_agent.py --scene_dump ./data/bedroom_04.h5
会看到出现的场景可能不用,注意图片左下角(一个是用显卡1050 ti ,第二个图是TITAN X得到的 )
5.完成场景的布置后,开始进行模型的训练。
python train.py
6.完成后进行评价。评价一个模型的检查站checkpoint_dir,运行下面的脚本:
python evaluate.py
后记:开始在1050 ti 上跑,后来在NVIDIA TITAN X跑,速度真是提高了不止一点。
环境的配置和实验设备真的是很重要的。