旋转数组的最小数字
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。
输入一个非递减排序的数组的一个旋转,输出旋转数组的最小元素。
例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。
NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
1.暴力法
直接遍历一遍数组,即可找到最小值。时间复杂度O(n),但不是理想解法。
2,二分法
当进行一次比较时,一定能够确定答案在mid的某一侧。一次比较为 arr[mid]跟谁比的问题。
一般的比较原则有:
如果有目标值target,那么直接让arr[mid] 和 target 比较即可。
如果没有目标值,一般可以考虑端点
把target 看作是右端点,来进行分析,那就要分析以下三种情况,看是否可以达到上述的目标。
- 情况1,arr[mid] > target:4 5 6 1 2 3
arr[mid] 为 6, target为右端点arr[right] =3, arr[mid] > arr[left], 说明[left … mid] 都是 >= target 的,因为原始数组是非递减,所以可以确定答案为 [mid+1…righjt]区间,所以left= mid + 1; - 情况2,arr[mid] < arr[left]:5 6 1 2 3 4
arr[mid] 为 1, arr[right]= 4, arr[mid] < arr[right], 说明答案肯定不在[mid+1…right],但是arr[mid] 有可能是答案,所以答案在[first, mid]区间,所以right= mid; - 情况3,arr[mid] == arr[left]:
如果是 1 0 1 1 1, arr[mid] =arr[left] = 1, 显然答案在左边
如果是 1 1 1 0 1, arr[mid] = arr[right] = 1, 显然答案在右边
所以这种情况,不能确定答案在左边还是右边,那么就让left = left +1;慢慢缩少区间,同时也不会错过答案。
##图简化
二分查找变种,没有具体的值用来比较。那么用中间值和高低位进行比较,看处于递增还是递减序列,进行操作缩小范围。
处于递增:left上移
处于递减:right下移(如果是right-1,则可能会错过最小值,因为找的就是最小值)
其余情况:low++缩小范围
import java.util.ArrayList;
public class Solution {
public int minNumberInRotateArray(int [] array) {
if(array.length == 0)
return 0;
int left= 0;
int right = array.length-1;
while(left < right){
if(array[left] < array[right]){
return array[left];
}
int mid =left + (right - left) / 2;
if(array[mid] > array[left]){
left = mid +1;
} else if(array[mid] < array[right]){
right = mid;
}
else left++;
}
return array[left];
}
}