数模学习(一)—层次分析法
概要:
AHP常用于评价类模型,根据专家经验或者自己意见(通常是自己的awa)对不同的指标评分,再利用一致性检验的方法来判断这类评价是否合理,如果合理,我们就可以通过指标一开始的不同权重,按照从大到小的顺序清楚哪一类的指标最为重要,依据这个顺序你就可以找到影响方案的最重要因素有哪些啦。
使用流程:
1.确定解决问题的层次结构
确定好我们的目标层(Objective),准则层(Criterion)和方案层(Plan),在这个地方论文写作需要标注好箭头,箭头的顺序是目标层—>准则层—>方案层,画出一个类似这样的图:
画好这样的图的前提,需要了解的是:
- 我们想要达到的目标是什么
- 如果想要达到这个目标,我们需要考虑的因素有哪些
- 目标实现的结果呈现有哪几种(即方案有哪些)
通过这些问题,来构造出你一开始基于问题的AHP结构雏形
2.准则层的判断矩阵
现在我们的三个层次我们都已经清楚了(这里先不介绍多层次的情况,后续遇到再更新),我们第二步需要做的就到了纠结的打分环节,这里你可以选择在网上找一些专家的评分(通常找不到),最推荐的节省时间的方式是根据队伍的头脑风暴+搜索有关资料的理解来进行打分,那么如何打分呢?
为了能让编程队友更容易的上手编程,我们这里打分的步骤可以按照这样的流程:
先将准则层的几个准则依据这样的表格进行评价打分,目前假设我们确定的准则层有:景色、花费、居住、饮食和交通,打分表格如下:
这个判断矩阵就是根据不同准则的重要性进行两两对比得到的结果,然后用整数或者分数来表示,这个矩阵有几个特点:
- 主对角线全部为1
- 根据主对角线对称的两个值 a i j 、 a j i a_{ij}、a_{ji} aij、aji,一定有 a i j ⋅ a j i = 1 a_{ij}·a_{ji} = 1 aij⋅aji=1
根据这两个特点来填写、检查我们的判断矩阵
3. 一个准则下对所有方案层进行比较
这一步里我们这里是将方案层的所有元素依据同一准则下的重要性不同来进行比较,打分形式与第二步一样,需要得到的也是这么一个表格:
- 根据第2、3步的判断矩阵,得到最后的一个总的判断矩阵
不赘述啦,总结得到的图是这样的:
你可能会有些疑问,我的这些指标权重怎么求呢,我们刚刚得到的只是一个有着整数和小数的矩阵,这里我们根本得不到最后需要的权重指数啊,接下来讲解的就是在使用AHP中最重要的部分了:-
算术平均法求权重(以下均以景色准则为例):
一共有三列,在这三列中各个方案的权重指标计算为(以第一列为例):
苏 杭 : 1 1 + 1 2 + 1 5 = 0.5882 北 戴 河 : 1 2 1 + 1 2 + 1 5 = 0.2941 桂 林 : 1 5 1 + 1 2 + 1 5 = 0.1177 苏杭:\frac{1}{1+\frac{1}{2} +\frac{1}{5}}=0.5882\\北戴河:\frac{\frac{1}{2}}{1+\frac{1}{2}+\frac{1}{5}}=0.2941\\桂林:\frac{\frac{1}{5}}{1+\frac{1}{2}+\frac{1}{5}}=0.1177 苏杭:1+21+
-