数学:SVM(7)对偶问题KKT条件

首先理解KKT条件:

若一个优化问题转成对偶问题后,表达式如下:

L(x,a,b) = f(x) + Sum{ ai * gi(x) } + Sum{ bi * hi(x) }

其中,g是不等式约束(将大于号都转化成小于号约束),h是等式约束。

那KKT条件是函数最优值必须满足三个条件:

  • (1) L对各个x求导为0;
  • (2) h(x) = 0;
  • (3) Sum{ ai * gi(x) } = 0, ai >= 0;

式子(1)和(2)好理解,但式子(3)可以进一步理解为ai取0或者gi(x)取0;

详细理解见https://www.cnblogs.com/dreamvibe/p/4349886.html

对于SVM对偶问题:

原凸优化表达式为:

min(W,b) max(a) L(W,a,b) = 1/2 * ||W||^2 + Sum{ ai * (1 - yi * (WT * Xi + b)) }

将极值点偏导为0带入后,消去W得到了一个新的需要约束规划的方程:

Max{ L(a) } = Sum{ ai } - 1/2 * Sum{ Sum{ ai * aj * yi * yj * XiT * Xj } }

其中,对于一个样本(Xi,yi),有一个ai。

解出ai,带回可以计算得到W,b。

即得到支持向量模型:

f(x) = WT * X + b = Sum{ ai * yi * XiT * X } + b

如何计算ai,解法采用使用KKT条件(具体算法细节见SMO算法):

拉格朗日乘子有约束 ai >= 0;

凸优化极值点有 Sum{ ai * yi } = 0;

综合上述条件发现,新的约束规划方程正好可以满足KKT条件,即:

  • ai >= 0;
  • yi * f(Xi) - 1 >= 0;
  • ai * (yi * f(xi) - 1) = 0;

当满足KKT条件时,对于任意样本(Xi,yi),总有ai = 0或yi * f(Xi) = 1.
若ai = 0,则该样本不会在模型f(x)中出现,即不会对模型有任何影响;
若ai > 0, 则必有yi * f(xi) = 1,其含义为样本处于支持向量上。

所以,支持向量机的特点在于,训练完成后,大部分训练样本都不保留,最终模型仅与支持向量有关。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值