[论文精读]Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Detection

论文网址:[2304.08876] 用于定向微小目标检测的动态粗到细学习 (arxiv.org)

论文代码:https://github.com/ChaselTsui/mmrotate-dcfl

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 省流版

1.1. 心得

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.4. Method

2.4.1. Dynamic Prior

2.4.2. Coarse Prior Matching

2.4.3. Finer Dynamic Posterior Matching

2.5.  Experiments

2.5.1. Datasets

2.5.2. Implementation Details

2.5.3. Main Results

2.5.4. Ablation Study

2.6. Analysis

2.7. Conclusion

3. Reference List


1. 省流版

1.1. 心得

(1)为什么学脑科学的我要看这个啊?愿世界上没有黑工

(2)最开始写小标题的时候就发现了,分得好细啊,好感度++

(3)作为一个外行人,这文章感觉提出了好多东西

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

        ①Extreme geometric shapes (tiny) and finite features (few pixels) of tiny rotating objects will cause serious mismatch (inaccurate positional prior?) and imbalance (inaccurate positive sample features?) issues

        ②They proposed dynamic prior and coarse-to-fine assigner, called DCFL

posterior  adj.在后部的;在后面的  n.臀部;屁股

2.2. Introduction

        ①Oriented bounding box greatly eliminates redundant background area, especially in aerial images

        ②Comparison figure:

where M* denotes matching function;

green, blue and red boxes are true positive, false positive, and false negative predictions respectively,

the left figure set is static and the right is dynamic

        ③Figure of mismatch and imbalance issues:

each point in the left figure denotes a prior location(先验打那么多个点啊...而且为啥打得那么整齐,这是什么one-stage吗

饼状图是说当每个框都是某个角度的时候吗?当每个框都不旋转的时候阳性样本平均数量是5.2?还是说饼状图的意思是自由旋转,某个特定角度的框的阳性样本是多少多少?这个饼状图并没有横向比较诶,只有这张图自己内部比较。

柱状图是锚框大小不同下平均阳性

        ④They introduce dynamic Prior Capturing Block (PCB) as their prior method. Based on this, they further utilize Cross-FPN-layer Coarse Positive Sample (CPS) to assign labels. After that, they reorder these candidates by prediction (posterior), and present gt by finer Dynamic Gaussian Mixture Model (DGMM)

eradicate  vt.根除;消灭;杜绝  n.根除者;褪色灵

2.3. Related Work

2.3.1. Oriented Object Detection

(1)Prior for Oriented Objects

(2)Label Assignment

2.3.2. Tiny Object Detection

(1)Multi-scale Learning

(2)Label Assignment

(3)Context Information

(4)Feature Enhancement

2.4. Method

(1)Overview

        ①For a set of dense prior P\in\mathbb{R}^{W\times H\times C}, where W denotes width, H denotes height and C denotes the number of shape information(什么东西啊,是那些点吗), mapping it to D by Deep Neural Network (DNN):

D=\mathrm{DNN}_{h}(P)

where \mathrm{DNN}_{h} represents the detection head(探测头...外行不太懂,感觉也就是一个函数嘛?);

one part D_{cls}\in\mathbb{R}^{W\times H\times A} in D denotes the classification scores, where A means the class number(更被认为是阳性的样本那层的W\times H里的数据会更大吗);

one part D_{reg}\in\mathbb{R}^{W\times H\times B} in D denotes the classification scores, where B means the box parameter number(查宝说是w, h, x, y, a之类的是box parameter

        ②In static methods, the pos labels assigned for P is G=\mathcal{M}_{s}(P,GT)

        ③In dynamic methods, the pos labels set G integrate posterior information: G={\mathcal M}_{d}(P,D,GT)

        ④The loss function:

\mathcal{L}=\sum_{i=1}^{N_{pos}}\mathcal{L}_{pos}(D_{i},G_{i})+\sum_{j=1}^{N_{neg}}\mathcal{L}_{neg}(D_{j},y_{j})

where N_{pos} and N_{neg} represent the number of positive and negative samples, y_i is the neg labels set

        ⑤Modelling D{\mathcal M}_{d} and GT:

\tilde{D}=\mathrm{DNN}_{h}(\underbrace{\mathrm{DNN}_{p}(P)}_{\text{Dynamic Prior}\hat{P}})

\tilde{G}=\mathcal{M}_{d}(\mathcal{M}_{s}(\tilde{P},GT),\tilde{GT})

\mathcal{L}=\sum_{i=1}^{\hat{N}_{pos}}\mathcal{L}_{pos}(\tilde{D}_{i},\tilde{G}_{i})+\sum_{j=1}^{\tilde{N}_{neg}}\mathcal{L}_{neg}(\tilde{D}_{j},y_{j})

2.4.1. Dynamic Prior

        ①Flexibility may alleviate mismatch problem

        ②Each prior represents a feature point

        ③The structure of Prior Capturing Block (PCB):

the surrounding information is considered by dilated convolution. Then caputure dynamic prior by Deformable Convolution Network (DCN). Moreover, using the offset learned from the regression branch to guide feature extraction in the classification branch and improve alignment between the two tasks.

        ④To achieve dynamic prior capturing, initializing each prior loaction \mathbf{p}(x,y) by each feature point’s spatial location \mathbf{s}. In each iteration, capture the offset set of each prior position \Delta \mathbf{o} to update \mathbf{s}:

\tilde{\mathbf{s}}=\mathbf{s}+st\sum_{i=1}^{n}\Delta\mathbf{o}_{i}/2n

where st denotes the stride of feature map, n denotes the number of offsets;

2D Gaussian distribution \mathcal{N}_{p}(\boldsymbol{\mu}_{p},\boldsymbol{\Sigma}_{p}) is regarded as the prior distribution;

动态的\tilde{\mathbf{s}}作为高斯的平均向量\boldsymbol{\mu}_{p}啥玩意儿??);

        ⑤Presetting a square \left ( w,h,\theta \right ) on each feature point

        ⑥The co-variance matrix:

\Sigma_p=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\begin{bmatrix}\frac{w^2}{4}&0\\0&\frac{h^2}{4}\end{bmatrix}\begin{bmatrix}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{bmatrix}\\\\ =\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\begin{bmatrix}\frac{w}{2}&0\\0&\frac{h}{2}\end{bmatrix}\begin{bmatrix}\frac{w}{2}&0\\0&\frac{h}{2}\end{bmatrix}\begin{bmatrix}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{bmatrix}\\\\ =RR^T

dilate  v.扩张;(使)膨胀;扩大    deformable  adj.可变形的;应变的;易变形的

2.4.2. Coarse Prior Matching

        ①For prior, limiting gt to a single FPN may cause sub-optimal layer selection and releasing gt to all layers may cause slow convergence

        ②Therefore, they propose Cross-FPN-layer Coarse Positive Sample (CPS) candidates, expanding candidate layers to gt's nearby spatial location and adjacent FPN layers

        ③Generalized Jensen-Shannon Divergence (GJSD) constructs CPS between \mathcal{N}_{p}(\boldsymbol{\mu}_{p},\boldsymbol{\Sigma}_{p}) and \mathcal{N}_{g}(\boldsymbol{\mu}_{g},\boldsymbol{\Sigma}_{g}):

\mathrm{GJSD}(\mathcal{N}_{p},\mathcal{N}_{g})=(1-\alpha)\mathrm{KL}(\mathcal{N}_{\alpha},\mathcal{N}_{p})+\alpha\mathrm{KL}(\mathcal{N}_{\alpha},\mathcal{N}_{g})

\left\{\begin{matrix} \operatorname{KL}\left(P\left\|Q\right)\right. =\sum P\left(x\right)\log\frac{P\left(x\right)}{Q\left(x\right)} \\\\ \operatorname{KL}\left(P\left\|Q\right)\right) =\int P\left(x\right)\log\frac{P\left(x\right)}{Q\left(x\right)}dx \end{matrix}\right.

which yields a closed-form solution;

where \Sigma_{\alpha}=(\Sigma_{p}\Sigma_{g})_{\alpha}^{\Sigma}=\left((1-\alpha)\Sigma_{p}^{-1}+\alpha\Sigma_{g}^{-1}\right)^{-1};

\begin{aligned} \mu_{\alpha}& =\left(\mu_{p}\mu_{g}\right)_{\alpha}^{\mu} \\ &=\Sigma_{\alpha}\left((1-\alpha)\Sigma_{p}^{-1}\mu_{p}+\alpha\Sigma_{g}^{-1}\mu_{g}\right) \end{aligned}

and due to the homogeneity of \mathcal{N}_{p} and \mathcal{N}_{g}\alpha =0.5

        ④Choosing top K prior with highest GJSD for each gt(选差异最大的那些)

2.4.3. Finer Dynamic Posterior Matching

        ①Two main steps are contained in this section, a posterior re-ranking strategy and a Dynamic Gaussian Mixture Model (DGMM) constraint

        ②The Possibility of becoming True predictions (PT) of the i^{th} sample D_i is:

PT_i=\frac{1}{2}Cls(D_i)+\frac{1}{2}IoU(D_i,gt_i)

choosing top Q samples with the highest scores as Medium Positive Sample (MPS) candidates

        ③They apply DGMM, which contains geometry center and semantic center in one object, to filter far samples

        ④For specific instance gt_i, the mean vector \boldsymbol{\mu}_{i,1} of the first Gaussian is the geometry center \left ( cx_i,cy_i \right ), the deduced \boldsymbol{\mu}_{i,2} in MPS denotes semantic center \left ( sx_i,sy_i \right )

        ⑤Parameterizing a instance:

DGMM_i(s|x,y)=\sum_{m=1}^2w_{i,m}\sqrt{2\pi|\Sigma_{i,m}|}\mathcal{N}_{i,m}(\mu_{i,m},\Sigma_{i,m})

where w_{i,m} denotes weight of each Gaussian distribution and their summation is 1;

\mu_{i,m} equals to gt's \boldsymbol{\Sigma}_{g}什么啊这是,但是m可以等于1或者2诶,那你g的协方差不就又是语义中心又是几何中心了吗

        ⑥For any DGMM(s|MPS)<e^{-g}, setting negative masks

2.5.  Experiments

2.5.1. Datasets

        ①Datasets: DOTAv1.0 /v1.5/v2.0, DIOR-R, VisDrone, and MS COCO

        ②Ablation dataset: DOTA-v2.0 with the most numbet of tiny objects

        ③Comparing dataset: DOTA-v1.0, DOTAv1.5, DOTA-v2.0, VisDrone2019, MS COCO and DIOR-R

2.5.2. Implementation Details

        ①Batch size: 4

        ②Framework based: MMDetection and MMRotate

        ③Backbone: ImageNet pre-trained models

        ④Learning rate: 0.005 with SGD

        ⑤Momentum: 0.9

        ⑥Weight decay: 0.0001

        ⑦Default backbone: ResNet-50 with FPN

        ⑧Loss: Focal loss for classifying and IoU loss for regression

        ⑨Data augmentation: random flipping

        ⑩On DOTA-v1.0 and DOTA-v2.0, using official setting to crop images to 1024×1024. The overlap is 200 and epoch is 12

        ⑪On other datasets, setting the input size to 1024 × 1024 (overlap 200), 800 × 800, 1333 × 800, and 1333×800 for DOTA-v1.5, DIOR-R, VisDrone, and COCO respectively. Epoch is set as  40, 40, 12, and 12 on the DOTA-v1.5, DIOR-R, COCO, and VisDrone

2.5.3. Main Results

(1)Results on DOTA series

        ①Comparison table on DOTA-v2.0 OBB:

where the red ones are the best and the blue ones are the second best performance on each metric

        ②Comparison table on DOTA-v1.0 OBB:

        ③Comparison table on DOTA-v1.5 OBB:

(2)Results on DIOR-R

        ①Comparison table on DIOR-R:

        ②Results of typical tiny objects vehicle, bridge, and wind-mill:

(3)Results on HBB Datasets

        ①Comparison table on VisDrone, MS COCO abd DOTA-v2.0 HBB:

2.5.4. Ablation Study

(1)Effects of Individual Strategy

        ①Employ prior on each feature point

        ②Individual effectiveness:

(2)Comparisons of Different CPS

        ①Ablation:

(3)Fixed Prior and Dynamic Prior

        ①Ablation:

(4)Detailed Design in PCB

        ①Using the offset of the regression head to guide the offset classification head will align better than applying DCN to a single regression branch

(5)Effects of Parameters

        ①Parameter adjustment of K and Q:

        ②Parameter adjustment of g

attenuate  v. (使)减弱;(使)纤细,稀薄  adj. 减弱的;稀薄的;细小的

2.6. Analysis

(1)Reconciliation of imbalance problems

        ①The mean predicted IoU and the mean positive sample number of gt holding different angles and different scales (absolute size):

where the left column denotes the quality imbalance and the right column denotes the quantity imbalance. The dynamic learning from coarse to fine proposed in the paper solves the problem of sample mismatch, and more positive samples are compensated to the previous abnormal angles and scales, namely the rotated small-scale real boxes can be allocated to more positive samples than before

dissection  n. 解剖,切开;解剖体;详细查究    delve  vi./vt. 钻研;探究;挖;n. 穴;洞

(2)Visualization

        ①Visualization of elimilations of False Negative and False Positive predictions:

where the first row and the second row are the results of RetinaNet-OBB and DCFL respectively. Furthermore, TP, FN and FP are green, red and blue frames. It can be see that DCFL can effectively locate oriented small objects with extreme shapes

        ②Visualization of sampled dynamic priors:

(3)Speed

        ①Compared with R3Det, S 2A-Net and RetinaNet with 16.2, 18.9, 20.8, FPS of DCFL is 20.9, which means the high efficiency of DCFL

        ②Parameters and GLOPs of DCFL:

2.7. Conclusion

        For solving the problems of mismatched feature prior and unbalanced positive samples, the authors proposed DCFL model with dynamic prior and coarse-to-fine assigner. Ultimately,, it achieves a remarkable performance

3. Reference List

Xu, C. et al. (2023) 'Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Detection', CVPR. doi: https://doi.org/10.48550/arXiv.2304.08876

  • 18
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值