[IEEE TMI 2024]Spatio-Temporal Graph Hubness Propagation Model for Dynamic Brain Network Classificat

论文网址:Spatio-Temporal Graph Hubness Propagation Model for Dynamic Brain Network Classification | IEEE Journals & Magazine | IEEE Xplore

论文代码:GitHub - xbrainnet/OT-MCSTGCN

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 心得

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Related Work

2.3.1. Dynamics in Brain Network

2.3.2. Graph Convolutional Network

2.4. Proposed Method

2.4.1. Network Dynamics Model of Functional Brain Network

2.4.2. Multi-Channel Spatio-Temporal Graph Convolutional Network

2.5. Experiment

2.5.1. Materials

2.5.2. Comparison Methods

2.5.3. Implementation

2.5.4. Classification Performance

2.6. Discussion

2.6.1. Analysis of Parameter Sensitivity

2.6.2. Visualization of Dynamic Brain Networks

2.6.3. Ablation Study

2.6.4. Discriminative Brain Connectivity and Regions

2.6.5. Computational Efficiency Analysis

2.7. Conclusion

1. 心得

(1)感觉不是偏向分类精度的,可能是更倾向于脑疾病检测的可解释性

2. 论文逐段精读

2.1. Abstract

        ①Existing problem: most works extract dynamic feature by sliding window, which ignores the high order dynamic evolution laws

hubness  n.枢纽度

2.2. Introduction

        ①(a) traditional methods separately extract spatial and temporal feature; (b) some dynamic methods extract feature by sliding windows, but they may ignore the relevant between different time window; (c) their model learn the graph hubness of each brain region with correlation and dynamic evolution by optimal transport:

2.3. Related Work

2.3.1. Dynamics in Brain Network

        ①"They only studied the independent changes of the brain network within each time window, which ignores the evolution process of functional brain networks."(其实没太get到作者这句话,的确现有的直接划分时间窗然后提取特征看上去比较独立。但进化过程emm,为什么就重要呢?类比信号改变的结果和改变的趋势,emmm。就好像这个作者是在求导一样!)

2.3.2. Graph Convolutional Network

        ①就介绍图卷积啥的,但也是很基础的GCN而不是什么特别的模型

2.4. Proposed Method

        ①The pipeline of proposed method:

2.4.1. Network Dynamics Model of Functional Brain Network

        ①Original rs-fMRI time-series data: X=(x_1,x_2,\cdots,x_N)^T\in R^{N\times M} with N brain regions and M time points

        ②Dynamic functional brain network (DFBN) construction: divide X to T non-overlapped windows and calculate Pearson Correlation (PC) for each window with connection threshold \alpha.

        ③Node importance: measured by PageRank

        ④The hubness of node:

h(u)_{i+1}=\sum_{v\in B(u)}\frac{h(v)_i}{D_v}

where B\left(u\right) denotes the neighbors of node uD_{v} denotes the degree of node vh\left ( v \right )_i denotes the hubness scores of node v at the i-th iteration. The initial hubness value of each node is \frac{1}{N}

        ⑤Transmission process, when t-1^{th} subnetwork is source domain, then the t^{th} is regarded as the target domain:

(win1这个表示真的很搞笑...虽然我知道是window 1)

        ⑥Hubness between adjacent nodes is learned by Kantorovich discrete optimal transport:

\begin{aligned} \min_{f_{t-1}\in R^{N\times N}}\langle W_{s},f_{t-1}\rangle_{F}, \\ s.t.f_{t-1}\mathbf{1}_{N} & =h_{t-1},\quad f_{t-1}{}^T\mathbf{1}_N=h_t, \\ f_{t-1}\mathbf{1}_{N} & =\Sigma_jf_{t-1_{ij}},\quad f_{t-1}{}^T\mathbf{1}_N=\Sigma_if_{t-1_{ij}} \end{aligned}

where f_{t-1} denotes optimal transport matrix, W_s denotes the transport cost matrix, \langle\cdot,\cdot\rangle_{F} denotes the Frobenius inner product of matrices, \langle W_s,f_{t-1}\rangle_F=\sum_i\sum_jW_{s_{ij}}f_{t-1_{ij}}\mathbf{1}_{N} is a  vecoter with N dimension which all elements are 1

        ⑦Entropy regularization function:

\left.H\left(f_{t-1}\right)=-\sum_{i,j}f_{t-1_{ij}}(log\left(f_{t-1_{ij}}\right)-1\right)

After regularization, the optimization function will be:

\min_{f_{t-1}\in R^{N\times N}}\langle W_{s},f_{t-1}\rangle_{F}-\varepsilon H(f_{t-1}),\\s.t.f_{t-1}\mathbf{1}_{N}=h_{t-1},{f_{t-1}}^{T}\mathbf{1}_{N}=h_{t}

where \varepsilon denotes regularization factor

        ⑧The optimal value is calculated by the matrix deflation:

f_{t-1_{ij}}=diag(u_i)K_{ij}diag(v_j)

where K_{ij}=exp(-W_{s_{ij}}/\varepsilon) and u\circ(Kv)=h_{t-1},\nu\circ(K^Tu)=h_t\circ is element wise product

        ⑨Iteration process:

u^{\mathrm{L}+1}=\frac{h_{t-1}}{Kv^\ell},v^{\mathrm{L}+1}=\frac{h_t}{K^Tu^{\mathrm{L}+1}},v^0=1_N

which gets the results:

F=(f_1,f_2,\cdots,f_{T-1})^T\in R^{(T-1)\times N\times N}

2.4.2. Multi-Channel Spatio-Temporal Graph Convolutional Network

        ①Spatial attention mechanism:

P=softmax(V_p\cdot Sigmoid((F^TZ_1)Z_2(Z_3F^T)^T+b_p))

where 除了F都是可学习参数

        ②Temporal attention:

Q=softmax(V_q\cdot Sigmoid((FM_1)M_2(M_3F^T)+b_q))

同上

        ③Graph convolution:

g_\Theta*_Gx=g_\Theta(L)x=\sum_k^{K-1}\Theta_kT_k(\tilde{L})x

        ④CNN:

\hat{F}^{(l)}=CNN(Relu(g_\Theta*_G(CNN(\hat{F}^{(l-1)}))))

        ⑤Algorithm:

2.5. Experiment

2.5.1. Materials

(1)Epilepsy subjects were collected from Jinling Hospital, Nanjing University School of Medicine

        ①Subjects: 306, with 114 NC, 103 frontal lobe epilepsy (FLE) and 89 temporal lobe epilepsy (TLE)

        ②Modalities: rs-fMRI and DTI

(2)ADNI

        ①Collection: ADNI2 and ADNI3

        ②Subjects: 82NC, 76 significant memory concern (SMC), 69 early mild cognitive impairment (EMCI)

(3)Pre-processing (for two datasets)

        ①Brain atlas: AAL 90

        ②Steps: 去原文看吧

2.5.2. Comparison Methods

        ①Compared methods(不仅有文字介绍还有专门的表...)(诶不对但怎么比了这么多方法):

2.5.3. Implementation

        ①Optimizer: Adam with 5e-3 learning rate, 1e-3 weight decay

        ②Epoch: 300

        ③Batch size: 20

        ④CNN: kernel size is 3 with stride 1

        ⑤GNN: 图卷积核的大小是45!?这啥玩意儿,可能我没用过这么原始的

        ⑥Cross-validation: 10 fold (但将训练集中 20% 的样本划分到验证集中,并选择验证集上表现最好的模型进行测试。该实验重复 10 次,并报告这 10 个实验的平均结果。)

        ⑦Hyper-parameter: grid search(啊啊啊啊啊啊啊做期刊的都很有时间啊)

2.5.4. Classification Performance

        ①Comparison table, with methods which have different brain construction method:

        ②Comparison table, with methods which have different feature extraction method:

        ③AUC table:

2.6. Discussion

2.6.1. Analysis of Parameter Sensitivity

        ①Sensitivity of hyperparameters \alpha and \varepsilon:

2.6.2. Visualization of Dynamic Brain Networks

        ①作者提出的方法可以捕获变化过程:

2.6.3. Ablation Study

        ①Module ablation:

2.6.4. Discriminative Brain Connectivity and Regions

        ①Hubnesses of patients change more than NC

        ②Significant connections:

        ③The average values of the top 3 most discriminative dynamic connections of different groups on the four diagnosis tasks:

        ④The top 10 significant brain regions:

2.6.5. Computational Efficiency Analysis

        ①Comparison table of computation cost:

2.7. Conclusion

        ~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值