论文代码:GitHub - xbrainnet/OT-MCSTGCN
英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用
目录
2.3.1. Dynamics in Brain Network
2.3.2. Graph Convolutional Network
2.4.1. Network Dynamics Model of Functional Brain Network
2.4.2. Multi-Channel Spatio-Temporal Graph Convolutional Network
2.5.4. Classification Performance
2.6.1. Analysis of Parameter Sensitivity
2.6.2. Visualization of Dynamic Brain Networks
2.6.4. Discriminative Brain Connectivity and Regions
2.6.5. Computational Efficiency Analysis
1. 心得
(1)感觉不是偏向分类精度的,可能是更倾向于脑疾病检测的可解释性
2. 论文逐段精读
2.1. Abstract
①Existing problem: most works extract dynamic feature by sliding window, which ignores the high order dynamic evolution laws
hubness n.枢纽度
2.2. Introduction
①(a) traditional methods separately extract spatial and temporal feature; (b) some dynamic methods extract feature by sliding windows, but they may ignore the relevant between different time window; (c) their model learn the graph hubness of each brain region with correlation and dynamic evolution by optimal transport:
2.3. Related Work
2.3.1. Dynamics in Brain Network
①"They only studied the independent changes of the brain network within each time window, which ignores the evolution process of functional brain networks."(其实没太get到作者这句话,的确现有的直接划分时间窗然后提取特征看上去比较独立。但进化过程emm,为什么就重要呢?类比信号改变的结果和改变的趋势,emmm。就好像这个作者是在求导一样!)
2.3.2. Graph Convolutional Network
①就介绍图卷积啥的,但也是很基础的GCN而不是什么特别的模型
2.4. Proposed Method
①The pipeline of proposed method:
2.4.1. Network Dynamics Model of Functional Brain Network
①Original rs-fMRI time-series data: with
brain regions and
time points
②Dynamic functional brain network (DFBN) construction: divide to
non-overlapped windows and calculate Pearson Correlation (PC) for each window with connection threshold
.
③Node importance: measured by PageRank
④The hubness of node:
where denotes the neighbors of node
,
denotes the degree of node
,
denotes the hubness scores of node
at the
-th iteration. The initial hubness value of each node is
⑤Transmission process, when subnetwork is source domain, then the
is regarded as the target domain:
(win1这个表示真的很搞笑...虽然我知道是window 1)
⑥Hubness between adjacent nodes is learned by Kantorovich discrete optimal transport:
where denotes optimal transport matrix,
denotes the transport cost matrix,
denotes the Frobenius inner product of matrices,
,
is a vecoter with
dimension which all elements are 1
⑦Entropy regularization function:
After regularization, the optimization function will be:
where denotes regularization factor
⑧The optimal value is calculated by the matrix deflation:
where and
,
is element wise product
⑨Iteration process:
which gets the results:
2.4.2. Multi-Channel Spatio-Temporal Graph Convolutional Network
①Spatial attention mechanism:
where 除了都是可学习参数
②Temporal attention:
同上
③Graph convolution:
④CNN:
⑤Algorithm:
2.5. Experiment
2.5.1. Materials
(1)Epilepsy subjects were collected from Jinling Hospital, Nanjing University School of Medicine
①Subjects: 306, with 114 NC, 103 frontal lobe epilepsy (FLE) and 89 temporal lobe epilepsy (TLE)
②Modalities: rs-fMRI and DTI
(2)ADNI
①Collection: ADNI2 and ADNI3
②Subjects: 82NC, 76 significant memory concern (SMC), 69 early mild cognitive impairment (EMCI)
(3)Pre-processing (for two datasets)
①Brain atlas: AAL 90
②Steps: 去原文看吧
2.5.2. Comparison Methods
①Compared methods(不仅有文字介绍还有专门的表...)(诶不对但怎么比了这么多方法):
2.5.3. Implementation
①Optimizer: Adam with 5e-3 learning rate, 1e-3 weight decay
②Epoch: 300
③Batch size: 20
④CNN: kernel size is 3 with stride 1
⑤GNN: 图卷积核的大小是45!?这啥玩意儿,可能我没用过这么原始的
⑥Cross-validation: 10 fold (但将训练集中 20% 的样本划分到验证集中,并选择验证集上表现最好的模型进行测试。该实验重复 10 次,并报告这 10 个实验的平均结果。)
⑦Hyper-parameter: grid search(啊啊啊啊啊啊啊做期刊的都很有时间啊)
2.5.4. Classification Performance
①Comparison table, with methods which have different brain construction method:
②Comparison table, with methods which have different feature extraction method:
③AUC table:
2.6. Discussion
2.6.1. Analysis of Parameter Sensitivity
①Sensitivity of hyperparameters and
:
2.6.2. Visualization of Dynamic Brain Networks
①作者提出的方法可以捕获变化过程:
2.6.3. Ablation Study
①Module ablation:
2.6.4. Discriminative Brain Connectivity and Regions
①Hubnesses of patients change more than NC
②Significant connections:
③The average values of the top 3 most discriminative dynamic connections of different groups on the four diagnosis tasks:
④The top 10 significant brain regions:
2.6.5. Computational Efficiency Analysis
①Comparison table of computation cost:
2.7. Conclusion
~