使用OpenCV和Python实现缺陷检测的示例代码

你可以使用OpenCV和Python来实现缺陷检测。具体来说,你需要使用OpenCV的图像处理功能来对图像进行处理,然后使用机器学习算法来检测缺陷。

以下是一个使用OpenCV和Python实现缺陷检测的示例代码
import cv2
import numpy as np
from sklearn.cluster import KMeans

读取图像

img = cv2.imread('path/to/image.jpg')

转换为灰度图像

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

阈值分割

ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)

形态学操作

kernel = np.ones((3, 3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)

轮廓检测

contours, hierarchy = cv2.findContours(opening, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

提取特征

features = []
for cnt in contours:
    x, y, w, h = cv2.boundingRect(cnt)
    area = cv2.contourArea(cnt)
    perimeter = cv2.arcLength(cnt, True)
    compactness = 4 * np.pi * area / (perimeter ** 2)
    features.append([x, y, w, h, area, perimeter, compactness])

聚类

kmeans = KMeans(n_clusters=2, random_state=0).fit(features)
labels = kmeans.labels_

绘制结果

for i, cnt in enumerate(contours):
    x, y, w, h = cv2.boundingRect(cnt)
    if labels[i] == 0:
        cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)
    else:
        cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)

显示结果

你需要使用cv2.imshow()函数来显示结果。具体来说,你可以使用以下代码来显示结果:

cv2.imshow('Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

在上面的代码中,'Result’是窗口的名称,img是要显示的图像。cv2.waitKey(0)函数会等待用户按下任意键后关闭窗口。cv2.destroyAllWindows()函数会关闭所有打开的窗口。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值