Opencv Python瓶口缺陷检测

该博客分享了一个使用OpenCV和Python进行瓶口缺陷检测的课程作业项目。主要步骤包括Hough圆检测确定瓶口位置,极坐标变换消除干扰,图像处理,轮廓检测和缺陷判断。虽然仍有提升空间,但能有效识别瓶口缺陷。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Opencv Python瓶口缺陷检测

这是最近在课程作业中做的小项目,放在这里和大家分享一下。

主要任务

判断瓶口是否完好,寻找瓶口缺陷部分,并将其框出(以下图为例进行演示)(包含程序部分代码)
原始

解决步骤

1.通过Hough圆检测,获取瓶口外侧圆,确定圆的位置和尺寸,对瓶口部分进行极坐标变化和极坐标反变换,消除瓶口外侧区域的干扰。
2.对之后的图像进行处理,提取缺陷部分进行轮廓绘制和缺陷判别。

1、导入功能包,读取图像

2、Hough圆检测获取瓶口位置和大小

为了防止误判,对圆半径进行限制,保证获得瓶口最外侧的轮廓

'''hough圆变换'''
cimg = cv2.cvtColor(bottle,cv2.COLOR_GRAY2BGR)  # 转换成彩色图
circles = cv2.HoughCircles(median,cv2.HOUGH_GRADIENT,1,100,
                         param1=100,param2=60,minRadius=150,maxRadius=160)  # Hough圆检测
circles = np.uint16(np.around(circles))
#print(circles)
for i in circles[0,:]:
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值