Linear Regression及各种线型回归在正则化中的应用

Linear Regression

线性回归:

from sklearn.linear_model import LinearRegression
lr = LinearRegression(fit_intercept=True)
lr.fit(x, y)
p = map(lr.predict, x)

e = p - y
total_error = np.sum(e*e)
rmse_train = np.sqrt(total_error / len(p))

交叉验证:

from sklearn.cross_validation import Kfold
kf = Kfold(len(x), n_folds=10)
err = 0
for train, test in kf:
    lr.fit(x[train], y[train])
    p = map(lr.predict, x[test])
    e = p - y[test]
    err += np.sum(e*e)
rmse_10cv = np.sqrt(err/len(x))

普通的最小二乘法学习时间非常短:

  • 小模型快速实现
  • 学习曲线、误差分析、上限分析

假设以平方差为损失函数,则优化目标为:

minwi=1m(yiwTxi)2 m i n w ∑ i = 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值