王大宝的CD

数据挖掘爱好者

推荐系统-隐因子模型(LFM)

今天我们来聊一聊LFM(Latent Factor Model)的故事,这也算是我们在推荐系统里第一个用到的学习算法了吧,前面讲的两个协同过滤都是基于统计来的。 协同过滤的思路就是基于用户和物品的交互行为,要么计算用户间的相似度,推荐相似度高的用户喜欢的物品,因为这两个用户可能兴趣相投;要么就是...

2019-01-21 16:10:44

阅读数 309

评论数 3

推荐系统-基于物品的协同过滤(Item-based CF)

今天我们来聊一聊基于物品的协同过滤即Item-based CF方法。有了上一篇的经验,你可能很容易就想到Item-based CF就是通过计算物品之间的相似度,然后用户曾与那些商品发生过交互,给他推荐与这些商品最接近的东西给他。这样做有什么好处呢?可解释性!虽然同样是计算相似度,但User-bas...

2019-01-13 15:20:58

阅读数 225

评论数 1

推荐系统-基于用户的协同过滤(User-based CF)

基于邻域的算法应该算是推荐系统中最基础的算法之一了,主要包括基于用户的协同过滤和基于物品的协同过滤,我觉得他们是最符合直觉的推荐算法了。你想想看,如果给你若干人的行为数据,你怎么去做推荐,一个就是找到和他最相似的用户,因为他们臭味相投,所以看看这些用户都看了些啥,然后给他推荐这些用户看过而待推荐用...

2019-01-09 15:58:10

阅读数 694

评论数 0

推荐系统概述

已经很长一段时间没写过东西了,一方面确实是乱七八糟的事情比较多,另一方面也确实是懒,所以趁着现在实验室没那么多活儿要干了,想要写写博客梳理梳理自己学习的一些东西。 至于为什么会选择推荐系统,你看看我们这种转行狗的学习路径就明白了。作为一名名字听起来很吓人的理工科专业学生,coding我们是比不过...

2019-01-05 16:47:01

阅读数 165

评论数 0

数据结构与算法(2)排序算法,用Python实现插入,选择,堆排,冒泡,快排和归并排序

前段时间鼓起勇气和老板说了一下以后想从事机器学习方向的工作,所以最好能有一份不错的实习,希望如果我有好的机会他可以让我去,没想到老板非常通情达理,说人还是要追寻自己感兴趣的东西,忙完这阵你就去吧。所以最近开始疯狂地投实习生简历,各家春招都去投了试试。那天第一次面试去了网易,面试官感觉很年轻,也挺有...

2018-04-11 16:20:01

阅读数 670

评论数 5

数据结构与算法(1)链表,基于Python解决几个简单的面试题

最近头一直很大,老板不停地布置各种任务,根本没有时间干自己的事情,真的好想鼓起勇气和他说,我以后不想干这个了,我文章也发了您就让我安安稳稳混到毕业行不行啊……作为我们这些想要跨专业的人来说,其实很大的一个劣势就是没有经历过一个计算机学科完整的培养,所以对计算机专业的一些很基本但又很重要的内容缺乏足...

2018-03-15 15:26:48

阅读数 1490

评论数 2

利用Python通过频谱分析和KNN完成iphone拨号的语音识别

利用Python,通过对波形文件的有效区域提取及频谱分析,利用KNN算法完成一个iphone拨号的语音识别。

2017-09-01 15:37:42

阅读数 1735

评论数 2

数据挖掘(三)分类模型的描述与性能评估,以决策树为例

分类模型的描述主要是混淆矩阵,精确率,召回率等等,分类模型的性能评估则主要讲述了交叉验证这种方式,结合决策树讲解了如何用python实现分类模型的描述与评估。

2017-07-25 09:14:58

阅读数 7472

评论数 2

数据挖掘(二)用python实现数据探索:汇总统计和可视化

数据挖掘的第一步数据探索,包括汇总统计和可视化,介绍了相关概念,并结合鸢尾花数据展示了如何用Python进行汇总统计量的计算以及常用的可视化来帮助我们分析数据的性质。

2017-07-17 09:54:51

阅读数 12197

评论数 13

数据挖掘(一)你真的了解什么是数据挖掘和数据本身吗?

数据挖掘系列的第一篇,介绍了关于数据挖掘的基本概念以及关于数据的方方面面,建立对于数据和数据挖掘的基本认识。

2017-07-10 15:34:53

阅读数 32561

评论数 0

机器学习笔记(十二)朴素贝叶斯算法及实践(NB算法的产生及参数估计)

朴素贝叶斯算法原理及实践,具体阐述了NB算法的应用背景及参数估计,还有用鸢尾花数据做的一个简单的小实例。

2017-04-23 12:29:02

阅读数 2464

评论数 0

机器学习笔记(十一)实践之数据竞赛的套路

梳理参加数据竞赛常见的套路和流程,以泰坦尼克号幸存者预测为例,希望可以帮助大家快速入门竞赛。

2017-04-02 11:08:44

阅读数 4862

评论数 4

机器学习笔记(十)EM算法及实践(以混合高斯模型(GMM)为例来次完整的EM)

EM算法简介,讲述了EM的算法原理及思想,用混合高斯模型(GMM)为例完成了一个完整的EM过程,还有GMM算法的Python实践。

2017-03-24 12:57:01

阅读数 20580

评论数 8

机器学习笔记(九)聚类算法及实践(K-Means,DBSCAN,DPEAK,Spectral_Clustering)

聚类算法的原理介绍及Python的简单实践,主要包括K-Means,DBSCAN,DPEAK,Spectral_Clustering。

2017-03-18 13:59:12

阅读数 11931

评论数 4

机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机

支持向量机(SVM)算法最人性、最白话的解释以及在Python中的调用。

2017-03-12 12:08:22

阅读数 8671

评论数 3

Python读写文件模式

Python读写文件模式的一个小笔记还有我充满怨气的吐槽!!!

2017-03-10 16:13:39

阅读数 739

评论数 1

机器学习笔记(七)Boost算法(GDBT,AdaBoost,XGBoost)原理及实践

Boost(提升)算法介绍,包括GDBT,AdaBoost和XGBoost的原理及Python中的实践。

2017-03-09 12:09:49

阅读数 25581

评论数 10

机器学习笔记(六)Bagging及随机森林

Bagging和随机森林原理介绍以及利用sklearn的实现。

2017-03-05 11:17:21

阅读数 3278

评论数 0

机器学习笔记(五)决策树算法及实践

决策树算法的理论与实践,主要介绍了ID3,C4.5和CART算法,用时可learn自带数据进行了简单的决策树实践。

2017-03-01 12:43:10

阅读数 1781

评论数 1

机器学习笔记(四)Logistic回归

Logistic回归原理及推导。构建了一个简单的分类问题,利用库和手写算法比较结果的异同,分类结果良好,但参数相差很大,希望有大神可以指点。

2017-02-19 17:32:37

阅读数 1999

评论数 3

提示
确定要删除当前文章?
取消 删除
关闭
关闭