原 数据结构与算法(2)排序算法,用Python实现插入,选择,堆排,冒泡,快排和归并排序
2018-04-11 16:20:01
阅读数:36
评论数:0
原 数据结构与算法(1)链表,基于Python解决几个简单的面试题
2018-03-15 15:26:48
阅读数:72
评论数:0
原 利用Python通过频谱分析和KNN完成iphone拨号的语音识别
利用Python,通过对波形文件的有效区域提取及频谱分析,利用KNN算法完成一个iphone拨号的语音识别。
2017-09-01 15:37:42
阅读数:1057
评论数:2
原 数据挖掘(三)分类模型的描述与性能评估,以决策树为例
分类模型的描述主要是混淆矩阵,精确率,召回率等等,分类模型的性能评估则主要讲述了交叉验证这种方式,结合决策树讲解了如何用python实现分类模型的描述与评估。
2017-07-25 09:14:58
阅读数:1842
评论数:2
原 数据挖掘(二)用python实现数据探索:汇总统计和可视化
数据挖掘的第一步数据探索,包括汇总统计和可视化,介绍了相关概念,并结合鸢尾花数据展示了如何用Python进行汇总统计量的计算以及常用的可视化来帮助我们分析数据的性质。
2017-07-17 09:54:51
阅读数:5136
评论数:13
原 数据挖掘(一)你真的了解什么是数据挖掘和数据本身吗?
数据挖掘系列的第一篇,介绍了关于数据挖掘的基本概念以及关于数据的方方面面,建立对于数据和数据挖掘的基本认识。
2017-07-10 15:34:53
阅读数:2098
评论数:0
原 机器学习笔记(十二)朴素贝叶斯算法及实践(NB算法的产生及参数估计)
朴素贝叶斯算法原理及实践,具体阐述了NB算法的应用背景及参数估计,还有用鸢尾花数据做的一个简单的小实例。
2017-04-23 12:29:02
阅读数:1298
评论数:0
原 机器学习笔记(十一)实践之数据竞赛的套路
梳理参加数据竞赛常见的套路和流程,以泰坦尼克号幸存者预测为例,希望可以帮助大家快速入门竞赛。
2017-04-02 11:08:44
阅读数:3960
评论数:4
原 机器学习笔记(十)EM算法及实践(以混合高斯模型(GMM)为例来次完整的EM)
EM算法简介,讲述了EM的算法原理及思想,用混合高斯模型(GMM)为例完成了一个完整的EM过程,还有GMM算法的Python实践。
2017-03-24 12:57:01
阅读数:6375
评论数:4
原 机器学习笔记(九)聚类算法及实践(K-Means,DBSCAN,DPEAK,Spectral_Clustering)
聚类算法的原理介绍及Python的简单实践,主要包括K-Means,DBSCAN,DPEAK,Spectral_Clustering。
2017-03-18 13:59:12
阅读数:4249
评论数:2
原 机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机
支持向量机(SVM)算法最人性、最白话的解释以及在Python中的调用。
2017-03-12 12:08:22
阅读数:3197
评论数:2
原 机器学习笔记(七)Boost算法(GDBT,AdaBoost,XGBoost)原理及实践
Boost(提升)算法介绍,包括GDBT,AdaBoost和XGBoost的原理及Python中的实践。
2017-03-09 12:09:49
阅读数:10557
评论数:6
原 机器学习笔记(五)决策树算法及实践
决策树算法的理论与实践,主要介绍了ID3,C4.5和CART算法,用时可learn自带数据进行了简单的决策树实践。
2017-03-01 12:43:10
阅读数:988
评论数:1
原 机器学习笔记(四)Logistic回归
Logistic回归原理及推导。构建了一个简单的分类问题,利用库和手写算法比较结果的异同,分类结果良好,但参数相差很大,希望有大神可以指点。
2017-02-19 17:32:37
阅读数:868
评论数:1
原 机器学习笔记(三) 线性回归及梯度下降算法
机器学习中线性回归相关的内容。包括线性回归损失函数的由来,梯度下降法的应用,正则化处理。
2017-02-15 14:44:07
阅读数:1493
评论数:3
原 机器学习笔记(二)矩阵和线性代数 例:用Python实现SVD分解进行图片压缩
机器学习中涉及的一些线性代数和矩阵分析的内容,并通过一个例子来表明线性代数的应用,利用Python实现SVD分解来进行图片压缩。
2017-01-17 13:45:17
阅读数:2536
评论数:2
原 机器学习笔记(一)概率论基础
机器学习基础之概率论相关内容,介绍了概率论中最常用的一些概,各种机器学习常用的分布,以及概率的运算。
2017-01-12 14:14:00
阅读数:1353
评论数:4