写在前面
在前面,我们已经学习过了无穷小量,这篇博客将介绍如何比较无穷小。
无穷小的比较
复习
我们在 1-4 中学过无穷小的定义。
如果函数 f ( x ) f(x) f(x) 当 x → x 0 x\to x_0 x→x0(或 x → ∞ x\to\infty x→∞)时的极限为零,那么称函数 f ( x ) f(x) f(x) 为当 x → x 0 x\to x_0 x→x0(或 x → ∞ x\to\infty x→∞)时的无穷小。
特别地,以零为极限的数列 { x n } \{x_n\} {xn} 称为 n → ∞ n\to\infty n→∞ 时的无穷小。
注意:
- 负无穷并不是无穷小,而是无穷大。
- 无穷小并不是一个数,而是一个变量。不能把无穷小和特别小的数混为一谈。
- 0 可以作为无穷小的唯一一个常量。
无穷小的性质和相关定理
-
在自变量的同一变化过程 x → x 0 x\to x_0 x→x0(或 x → ∞ x\to\infty x→∞)中,函数 f ( x ) f(x) f(x) 具有极限 A A A 的充分必要条件是 f ( x ) = A + α f(x)=A+\alpha f(x)=A+α,其中 α \alpha α 是无穷小。
这个定理说明了无穷小与函数极限的关系,在此复习一下。
-
在自变量的同一变化过程中,如果 f ( x ) f(x) f(x) 为无穷大,那么 1 f ( x ) \dfrac1{f(x)} f(x)1 为无穷小;反之,如果 f ( x ) f(x) f(x) 为无穷小且 f ( x ) ≠ 0 f(x)\ne0 f(x)=0,那么 1 f ( x ) \dfrac1{f(x)} f(x)1 为无穷大。
-
有限个无穷小之和仍是无穷小。
- 推论1:常数与无穷小的乘积是无穷小。
- 推论2:有限个无穷小的乘积是无穷小。
新知
1. 两个无穷小的商有什么意义?
我们知道两个无穷小的和差积都是无穷小,但是两个无穷小的商却会出现不同情况。例如书上所给出的例子:
- lim x → 0 x 2 3 x = 0 \displaystyle\lim_{x\to0}\dfrac{x^2}{3x}=0 x→0lim3xx2=0
- lim x → 0 3 x x 2 = ∞ \displaystyle\lim_{x\to0}\dfrac{3x}{x^2}=\infty x→0limx23x=∞
- lim x → 0 sin x 3 x = 1 3 \displaystyle\lim_{x\to0}\dfrac{\sin x}{3x}=\dfrac13 x→0lim3xsinx=31
两个无穷小之比的极限的各种不同情况,反映了不同的无穷小趋于零的快慢程度。
就上面的例子来说,在
x
→
0
x\to0
x→0 的过程中,
x
2
→
0
x^2\to0
x2→0 比
3
x
→
0
3x\to0
3x→0 快些,
3
x
→
0
3x\to0
3x→0 比
x
2
→
0
x^2\to0
x2→0 慢些,而
sin
x
→
0
\sin x\to0
sinx→0 和
3
x
→
0
3x\to0
3x→0 快慢相仿。
类比我们之前所学习过的不同函数增长的差异,我们知道指数函数( y = a x y=a^x y=ax, a > 1 a>1 a>1)的增长速度是很快的,都说它是“爆炸性增长”,而一次函数则是恒定线性增长,相比之下,指数函数的反函数对数函数 y = log a x y=\log_ax y=logax 增长速度就很慢了。
通过这个类比,理解就更清晰了。
同样,我们也就可以对无穷小进行阶的比较。
2. 阶的比较
规定 α \alpha α 和 β \beta β 都是在同一个自变量的变化过程中的无穷小,且 α ≠ 0 \alpha\ne0 α=0, lim β α \lim\dfrac\beta\alpha limαβ 也是在这个变化过程中的极限。
我们定义:
- 如果 lim β α = 0 \lim\dfrac\beta\alpha=0 limαβ=0,那么就说 β \beta β 是比 α \alpha α 高阶的无穷小,记作 β = o ( α ) . \beta=o(\alpha). β=o(α).
- 如果 lim β α = ∞ \lim\dfrac\beta\alpha=\infty limαβ=∞,那么就说 β \beta β 是比 α \alpha α 低阶的无穷小。
- 如果 lim β α = c ≠ 0 \lim\dfrac\beta\alpha=c\ne0 limαβ=c=0,那么就说 β \beta β 与 α \alpha α 是同阶无穷小。
- 如果 lim β α k = c ≠ 0 \lim\dfrac\beta{\alpha^k}=c\ne0 limαkβ=c=0,那么就说 β \beta β 是关于 α \alpha α 的 k k k 阶无穷小。
- 如果 lim β α = 1 \lim\dfrac\beta\alpha=1 limαβ=1,那么就说 β \beta β 与 α \alpha α 是等价无穷小,记作 α ∼ β \alpha\sim\beta α∼β.
无穷小的等价关系具有下列性质:
- 自反性: α ∼ α \alpha\sim\alpha α∼α
- 对称性:若 α ∼ β \alpha\sim\beta α∼β,则 β ∼ α \beta\sim\alpha β∼α
- 传递性:若 α ∼ β \alpha\sim\beta α∼β, β ∼ γ \beta\sim\gamma β∼γ,则 α ∼ γ \alpha\sim\gamma α∼γ
证明:
① 自反性:
因为 lim α α = 1 \lim\dfrac\alpha\alpha=1 limαα=1,所以根据定义 α ∼ α \alpha\sim\alpha α∼α
② 对称性:
因为 α ∼ β \alpha\sim\beta α∼β,所以 lim α β = 1 \lim\dfrac\alpha\beta=1 limβα=1,所以 lim β α = 1 \lim\dfrac\beta\alpha=1 limαβ=1,即 β ∼ α \beta\sim\alpha β∼α
③ 传递性:
因为 α ∼ β \alpha\sim\beta α∼β, β ∼ γ \beta\sim\gamma β∼γ,所以 lim α β = 1 \lim\dfrac\alpha\beta=1 limβα=1, lim β γ = 1 \lim\dfrac\beta\gamma=1 limγβ=1
所以 lim α γ = lim ( α β ⋅ β γ ) = 1 \lim\dfrac\alpha\gamma=\lim\Big(\dfrac\alpha\beta\cdot\dfrac\beta\gamma\Big)=1 limγα=lim(βα⋅γβ)=1,即 α ∼ γ \alpha\sim\gamma α∼γ
3. 有关等价无穷小的两个定理
[定理1]
β
\beta
β 与
α
\alpha
α 是等价无穷小的充分必要条件为
β
=
α
+
o
(
α
)
.
\beta=\alpha+o(\alpha).
β=α+o(α).
这个定理的证明,只需要根据无穷小量阶的比较的定义和极限的运算法则就可以。
证明:
① 必要性:设 α ∼ β \alpha\sim\beta α∼β,则 lim β − α α = lim ( β α − 1 ) = lim β α − 1 = 0 \lim\dfrac{\beta-\alpha}\alpha=\lim\Big(\dfrac\beta\alpha-1\Big)=\lim\dfrac\beta\alpha-1=0 limαβ−α=lim(αβ−1)=limαβ−1=0因此 β − α = o ( α ) \beta-\alpha=o(\alpha) β−α=o(α),即 β = α + o ( α ) \beta=\alpha+o(\alpha) β=α+o(α)
② 充分性:设 β = α + o ( α ) \beta=\alpha+o(\alpha) β=α+o(α),则 lim β α = lim α + o ( α ) α = lim ( 1 + o ( α ) α ) = 1 \lim\dfrac\beta\alpha=\lim\dfrac{\alpha+o(\alpha)}\alpha=\lim\Big(1+\dfrac{o(\alpha)}\alpha\Big)=1 limαβ=limαα+o(α)=lim(1+αo(α))=1因此 α ∼ β \alpha\sim\beta α∼β
[定理2]
设
α
∼
α
~
\alpha\sim\tilde{\alpha}
α∼α~,
β
∼
β
~
\beta\sim\tilde{\beta}
β∼β~,且
lim
α
~
β
~
\lim\dfrac{\tilde{\alpha}}{\tilde{\beta}}
limβ~α~ 存在,则
lim
β
α
=
lim
β
~
α
~
.
\lim\dfrac\beta\alpha=\lim\dfrac{\tilde{\beta}}{\tilde{\alpha}}.
limαβ=limα~β~.
证明: lim β α = lim ( β β ~ ⋅ β ~ α ~ ⋅ α ~ α ) = lim β β ~ ⋅ lim β ~ α ~ ⋅ lim α ~ α = lim β ~ α ~ \lim\dfrac\beta\alpha=\lim\Bigg(\dfrac\beta{\tilde{\beta}}\cdot\dfrac{\tilde{\beta}}{\tilde{\alpha}}\cdot\dfrac{\tilde\alpha}\alpha\Bigg)=\lim\dfrac\beta{\tilde{\beta}}\cdot\lim\dfrac{\tilde{\beta}}{\tilde{\alpha}}\cdot\lim\dfrac{\tilde{\alpha}}\alpha=\lim\dfrac{\tilde{\beta}}{\tilde{\alpha}} limαβ=lim(β~β⋅α~β~⋅αα~)=limβ~β⋅limα~β~⋅limαα~=limα~β~.
证明运用了将 β α \dfrac{\beta}{\alpha} αβ 拆分为三项乘积的方法,这种求极限或者证明极限的方法应该比较常用。
这个定理表明,在求两个无穷小之比的极限时,分子及分母都可以用等价无穷小来代替,这样可以简化极限的计算。
举个例子🌰
运用等价无穷小的知识,我们可以很轻松地求出 lim x → 0 tan 2 x sin 5 x = 2 5 \displaystyle\lim_{x\to0}\dfrac{\tan2x}{\sin5x}=\dfrac25 x→0limsin5xtan2x=52,这是因为当 x → 0 x\to0 x→0 时, tan 2 x ∼ 2 x \tan2x\sim2x tan2x∼2x, sin 5 x ∼ 5 x \sin5x\sim5x sin5x∼5x.
不过需要注意的是,两个等价无穷小之差的各项不能进行等价无穷小代换。例如, tan x − sin x \tan x-\sin x tanx−sinx 不等价于 x − x = 0 x-x=0 x−x=0。这是因为由刚刚所说的定理 β = α + o ( α ) \beta=\alpha+o(\alpha) β=α+o(α),两个等价无穷小之差是一个更高阶的无穷小(当然也有可能为 0),而两个同阶但非等价的无穷小之差仍是与这两个无穷小同阶的无穷小。
除了通过重要极限 lim x → 0 sin x x = 1 \displaystyle\lim_{x\to0}\dfrac{\sin x}x=1 x→0limxsinx=1 得到的 sin x ∼ x \sin x\sim x sinx∼x 之外,还有很多常见的等价无穷小。
4. 常见的等价无穷小
先放一张图:
也算是幽默地展现了常见的等价无穷小公式。写出来就是:
当 □ → 0 \square\to0 □→0 时
sin
□
∼
□
\sin\square\sim\square
sin□∼□
tan
□
∼
□
\tan\square\sim\square
tan□∼□
arcsin
□
∼
□
\arcsin\square\sim\square
arcsin□∼□
arctan
□
∼
□
\arctan\square\sim\square
arctan□∼□
1
−
cos
□
∼
1
2
□
2
1-\cos\square\sim\dfrac12\square^2
1−cos□∼21□2
这些是基于第一重要极限推导出的,或者和第一重要极限有关联。
ln
(
1
+
□
)
∼
□
\ln(1+\square)\sim\square
ln(1+□)∼□
e
□
−
1
∼
□
e^\square-1\sim\square
e□−1∼□
log
a
(
1
+
□
)
∼
□
ln
a
\log_a(1+\square)\sim\dfrac{\square}{\ln a}
loga(1+□)∼lna□
a
□
−
1
∼
□
ln
a
a^\square-1\sim\square\ln a
a□−1∼□lna
这些是基于第二重要极限推导而来。
再看一个书上证明的:
当
x
→
0
x\to0
x→0 时,
1
+
x
n
−
1
∼
1
n
x
\sqrt[n]{1+x}-1\sim\dfrac1nx
n1+x−1∼n1x.
证明:
因为 lim x → 0 1 + x n − 1 1 n x = lim x → 0 ( 1 + x n ) n − 1 1 n x [ ( 1 + x ) n − 1 n + ( 1 + x ) n − 2 n + ⋯ + 1 ] = lim x → 0 n ( 1 + x ) n − 1 n + ( 1 + x ) n − 2 n + ⋯ + 1 = 1 \displaystyle\lim_{x\to0}\dfrac{\sqrt[n]{1+x}-1}{\dfrac1nx}=\lim_{x\to0}\dfrac{(\sqrt[n]{1+x})^n-1}{\dfrac1nx[\sqrt[n]{(1+x)^{n-1}}+\sqrt[n]{(1+x)^{n-2}}+\cdots+1]}\\\qquad=\lim_{x\to0}\dfrac n{\sqrt[n]{(1+x)^{n-1}}+\sqrt[n]{(1+x)^{n-2}}+\cdots+1}=1 x→0limn1xn1+x−1=x→0limn1x[n(1+x)n−1+n(1+x)n−2+⋯+1](n1+x)n−1=x→0limn(1+x)n−1+n(1+x)n−2+⋯+1n=1
所以 1 + x n − 1 ∼ 1 n x ( x → 0 ) \sqrt[n]{1+x}-1\sim\dfrac1nx(x\to0) n1+x−1∼n1x(x→0).
*需要用到 a n − b n = ( a − b ) ( a n − 1 + a n − 2 b + a n − 3 b 2 + ⋯ + b n − 1 ) a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^2+\cdots+b^{n-1}) an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+bn−1) 这个公式。
下面的等价无穷小需要通过泰勒展开式推导,这里卖个关子,我们下次再说。
当
x
→
0
x\to0
x→0 时
□
−
ln
(
1
+
□
)
∼
1
2
□
2
\square-\ln(1+\square)\sim\dfrac12\square^2
□−ln(1+□)∼21□2
ln
(
□
+
1
+
□
2
)
∼
□
\ln(\square+\sqrt{1+\square^2})\sim\square
ln(□+1+□2)∼□
□
−
sin
□
∼
1
6
□
3
\square-\sin\square\sim\dfrac16\square^3
□−sin□∼61□3
tan
□
−
□
∼
1
3
□
3
\tan\square-\square\sim\dfrac13\square^3
tan□−□∼31□3
□
−
arctan
□
∼
1
3
□
3
\square-\arctan\square\sim\dfrac13\square^3
□−arctan□∼31□3
tan
□
−
sin
□
∼
1
2
□
3
\tan\square-\sin\square\sim\dfrac12\square^3
tan□−sin□∼21□3
(
1
+
□
)
μ
−
1
∼
μ
□
(1+\square)^\mu-1\sim\mu\square
(1+□)μ−1∼μ□
后话
上个月看着这迷之相似符号,我还在想咋这么高级,现在竟然也是学到了(我是自学的)。
如有错误,恳请指出。