张量
点击查看学习视频来源.
定义:多维数组(列表)
基本内容:
张量可以表示0阶到n阶的数组(列表)
阶:张量的维数
标量 0阶
向量 1阶
矩阵 2阶
张量 n阶
数据类型:
int 32 float 32 float 64
张量创建
创建张量:
格式:
tf.constant(张量内容,dtype=数据类型(可选))
import tensorflow as tf
a=tf.constant([1,5],dtype=tf.int 64)
生成截断式正态分布的随机数:
tf.random.truncated_normal(纬度,mean=均值,stddev=标准差)
tf.zeros(维度)#创建全为0的张量
tf.ones(维度)#创建全为1的张量
tf.fill(维度,指定值)#创建指定值的张量
例如:
a=tf.fill([2,2],9)
pirint(a)
tf.tensor([[9 9][9 9]],shape=(2,2)dtpye=int32)
将numpy的数据类型转换为tensor数据类型
tf.convert_to_tensor(数据名dtype=数据类型)
生成均匀分布随机数[minval,maxval] minval最大值 maxval 最小值
tf.random.uniform(维度,minval=0,maxval=1)
找到张量里面的最大最小值
tf.reduce_min(张量名)
tf.reduce_max(张量名)
计算张量沿着指定维度的平均值
(axis=0 纵轴 axis=1 横轴 不说明则对所有元素进行操作)
tf.reduce_mean(张量名,axis=操作轴)
计算沿着指定维度的和:
.tf.reduce_sum(张量名,axis=操作轴)
特征标签配对
features=tf.cinstant([12,23,10,17]) (value)
labels=tf.constant([0,1,1,0]) (key)
dataset=tf.data.Dataset.from_tensor_slices((features,labels))
张量基本运算:
tf.add(张量1,张量2) #加
tf.subtract(张量1,张量2) #减
tf.multipiy(张量1,张量2) #乘
tf.divide(张量1,张量2)#除
tf.square(张量名)#平方
tf.pow(张量名,n次方数)#n次方
tf.sqrt(张量名)#开平方
矩阵乘法:
tf.matmul(矩阵1,矩阵2)
定义可训练(值可以更新)用于:
1、求导函数
with结构记录计算过程,gradient求出张量的梯度
with tf.GradientTape() as tape:
若干计算过程
grad=tape.gradient(函数,对谁求导)
with tf.GradientTape() as tape:
w=tf.Variable(tf.constant(3.0))
loss=tf.pow(w,2)
grad=tape.gradient(w,2)
结果:
grad=6.0
2、更新值 assign_sub:
w=tf.Variable(w要自减的值)
w.assgin_sub(减数)
enumerate:返回张量的序列号
常在for循环中使用
seq=['one','two','three']
for i element in enumerate(seq):
print(i,element)
结果:
0 one
1 two
2 three
tf.nn.softmax符合概率分布(目前此部分代码模糊,需进一步学习此内容):
y=tf.constant([1.01,2.01,-0.66])
y_pro=tf.nn.softmax(y)
print("After softmax,y_pro is:",y_pro)
tf.argmax(张量名,axis=操作轴)返回最大值的索引值:
import numpy as np
test=np.array([
[1,2,3],
[2,3,4],
[5,4,3],
[8,7,2]])
print(tf.argmax(test,axis=0))#每一行最大值
print(tf.argmax(test,axis=1))#每一列最大值
tf.Tensor([3 3 1],shape(3,),dtype=int(64))
tf.Tensor([2 2 0 0],shape(4,),dtype=int(64))