概率公理及其基础

本文介绍了数学中的σ代数概念,强调其在测度论中的作用,特别是定义可测集合。柯尔莫哥洛夫公理详细阐述了概率的定义,包括非负性、归一性和可加性。同时,文章探讨了正态分布的特性,并通过切比雪夫不等式扩展到非正态情况。
摘要由CSDN通过智能技术生成

先引入σ-代数 的概念。
在数学中,某个集合X上的σ代数又叫σ域,是X的所有子集的集合(也就是幂集)的一个子集。这个子集满足对于差集运算和可数个并集运算的封闭性(因此对于可数个交集运算也是封闭的)。
σ代数在测度论里可以用来严格地定义所谓的“可测集合”,是测度论的基本概念之一。

概率公理是概率论的公理,任何事件发生的概率的定义域均满足概率公理,也被人们熟知为柯尔莫果洛夫公理(Kolmogorov axioms)

某个事件E的概率 P(E) 是定义在“全体”(universe)或者所有可能基础事件的样本空间 Ω 时,概率 P 必须满足以下柯尔莫果洛夫公理。
也可以说,概率可以被解释为定义在样本空间的子集的 σ 代数上的一个测度,那些子集为事件,使得所有集的测度为1.。这个性质很重要,因为这里提出条件概率的自然概念,对于每一个非零概率 A 都可以在空间上定义另外一个概率:

给定A时,B的条件概率
这通常被读作:给定A时B的概率
如果给定A时B的条件概率与B的概率相同,则A与B被称为是独立的。

柯尔莫果洛夫公理
假设我们有一个基础集 Ω,其子集 ξ 的集合为 σ 代数,和一个给 ξ 的元素指定一个实数的函数 P。ξ 的元素是 Ω 的子集,称为“事件”。

第一公理(非负性)
对于任意一个集合 A ∈ ξ,即对于任意的事件 P(A)≥0.
即,任一事件的概率都可以用0到1区间上的一个实数来表示。

第二公理(归一化)
P(Ω)=1

即,整体样本集合中的某个基本事件发生的概率为1。更加明确地说,在样本集合之外已经不存在基本事件了。
这在一些错误的概率计算中经常被小看;如果你不能准确地定义整个样本集合,那么任意子集的概率也不可能被定义。

第三公理(可加性)
任意两两不相交事件 E1, E2,…的可数序列满足
事件的可加性
即,不相交子集的并的事件集合的概率为那些子集的概率的和。这也被称为是 σ可加性。如果存在子集间的重叠,这一关系不成立。

PS:这部分内容应该非原创,是从自己的笔记里挪出来的,之后找到出处再附上。

我们都知道对正态分布而言,其中约99.7%的点落在距均值三个标准差的范围内。那么如果数据不是正态分布呢,此时可用切比雪夫不等式说明:

对任何概率分布,结果超过平均值k个标准差的概率不超过 1 k 2 \frac{1}{k^2} k21

对任何单峰概率分布,结果超过平均值k个标准差的概率不超过 4 9 k 2 \frac{4}{9k^2} 9k24

故即使数据不是正态分布,在均值附近不超过3倍标准偏差的概率也可达88.9%。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值